Summary of 3D stress resolution

Ramón Arrowsmith

Thanks to Don Ragan and Olaf Zielke
Given \mathbf{S} principal stress tensor with orientation $x^{\prime} y^{\prime} z^{\prime}$
Rotate to N-S, E-W components

$$
\begin{gathered}
\mathbf{R}=\left[\begin{array}{ccc}
l & l^{\prime} & l^{\prime \prime} \\
m & m^{\prime} & m^{\prime \prime} \\
n & n^{\prime} & n^{\prime \prime}
\end{array}\right] \text { where } \begin{aligned}
& l=x * x^{\prime} \\
& l^{\prime}=x * y^{\prime} \\
& l^{\prime \prime}=x * z^{\prime} \\
& \ldots \\
& \mathbf{S}^{\prime}=\mathbf{R}^{T} \mathbf{S R}
\end{aligned}
\end{gathered}
$$

And given plane with normal vector direction cosines \mathbf{N}
Traction $\mathbf{T}=\mathbf{S}^{\prime} * \mathbf{N}$ (row and column multiplication)
$T=\sqrt{\mathbf{T}(1)^{2}+\mathbf{T}(2)^{2}+\mathbf{T}(3)^{2}}$ traction magnitude
$\sigma_{n}=\mathbf{T} \cdot \mathbf{N}$ dot product for normal traction magnitude
$\mathbf{B}=\mathbf{T} \times \mathbf{N}$ cross product for null vector $B=\sqrt{\mathbf{B}(1)^{2}+\mathbf{B}(2)^{2}+\mathbf{B}(3)^{2}} \mathbf{B}$ magnitude
$\mathbf{B}_{\text {normalized }}=\mathbf{B} . / B$ normalize for orientation if necessary
$\mathbf{T}_{\mathbf{s}}=\mathbf{N} \times \mathbf{B}$ cross product for shear traction vector $\tau=\sqrt{\mathbf{T}_{\mathbf{s}}(1)^{2}+\mathbf{T}_{\mathbf{s}}(2)^{2}+\mathbf{T}_{\mathbf{s}}(3)^{2}}$ shear traction magnitude
$\mathbf{T}_{\mathbf{s} \text { normalized }}=\mathbf{T}_{\mathbf{s}} \cdot / \tau$ normalize for shear traction orientation
Coulomb failure function: $\Delta \sigma_{f}=\Delta \tau-(\mu-P) \Delta \sigma_{n}$

