Advanced Structural Geology, Fall 2022

Faults and stress

Ramón Arrowsmith

ramon.arrowsmith@asu.edu

Arizona State University

Relationship between traction and stress

By balancing the traction with stress, we can solve for the normal and shear tractions as a function of the stress tensor components and the orientation of the plane.

Cauchy's equations:

$$
\begin{aligned}
& \sigma_{n}=\sigma_{x x} \cos ^{2} \theta+\sigma_{y y} \sin ^{2} \theta+2 \sigma_{x y} \cos \theta \sin \theta \\
& \tau=\sigma_{s}=\sigma_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+\left(\sigma_{x x}-\sigma_{y y}\right) \cos \theta \sin \theta
\end{aligned}
$$

Eanttis surface is free of shear fractions, so normal stress on earth's surface from atmosphere is a principal stress. Othm principal stresses are 1 so horizontal surfaces must contain the other two principal stresses.

Principal Stresses

Orientation:

$$
\gamma_{1}=\frac{1}{2} \tan ^{-1}\left(\frac{2 \sigma_{x y}}{\sigma_{x x}-\sigma_{y y}}\right), \gamma_{2}=\gamma_{1}+90^{\circ}
$$

Magnitude:

$$
\begin{aligned}
& \sigma_{1}=\frac{1}{2}\left(\sigma_{x x}+\sigma_{y y}\right)+\left[\frac{1}{4}\left(\sigma_{x x}-\sigma_{y y}\right)^{2}+\left(\sigma_{x y}\right)^{2}\right]^{1 / 2} \\
& \sigma_{2}=\frac{1}{2}\left(\sigma_{x x}+\sigma_{y y}\right)-\left[\frac{1}{4}\left(\sigma_{x x}-\sigma_{y y}\right)^{2}+\left(\sigma_{x y}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

Can spefify stat of stress with the principal stresses f orientation
σ_{1} is maximum compression
σ_{3} is minimum (in 3D)
σ_{2} is intermediate
Returning to Cauchy's equations:
$\sigma_{n}=\sigma_{x x} \cos ^{2} \theta+\sigma_{y y} \sin ^{2} \theta+2 \sigma_{x y} \cos \theta \sin \theta$
$\tau=\sigma_{s}=\sigma_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+\left(\sigma_{x x}-\sigma_{y y}\right) \cos \theta \sin \theta$
delete 0 components and use these identities:

$$
\begin{array}{ll}
\cos ^{2} \theta=\frac{1}{2}+\frac{1}{2} \cos 2 \theta & \\
\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \sin 2 \theta & \text { and } \\
\cos \theta \sin \theta=\frac{1}{2} \sin 2 \theta & \sigma_{x x}=\sigma_{1} ; \sigma_{y y}=\sigma_{3}
\end{array}
$$

$$
\sigma_{n}=\frac{\sigma_{1}+\sigma_{3}}{2}-\frac{\sigma_{1}-\sigma_{3}}{2} \cos 2 \theta
$$

θ is positive clockwise from the σ_{1} direction

$$
\tau=\sigma_{s}=\frac{\sigma_{1}-\sigma_{3}}{2} \sin 2 \theta
$$

Faults, stress, and tractions

Mohr Circle

Graphical construction that lets us visualize the relationship between the principal stresses and tractions on a boundary (like a fault).

Movir space

Physical space

θ measured positive counter clockwise from σ_{1} direction to normal of plane of interest 2θ measure positive, clockwise from σ_{n} direction on Mohr circle

Christian Otto Mohr (October 8, 1835 October 2, 1918) was a German civil engineer. In 1882, he famously developed the graphical method for analysing stress known as Mohr's circle and used it to propose an early theory of strength based on shear stress.

Faults and stress: traction and stress

$$
\begin{aligned}
& \sigma_{n}=\frac{\sigma_{1}+\sigma_{3}}{2}-\frac{\sigma_{1}-\sigma_{3}}{2} \cos 2 \theta \\
& \tau=\sigma_{s}=\frac{\sigma_{1}-\sigma_{3}}{2} \sin 2 \theta \\
& \text { Equations of the Mohr Circle (also "Cauchy's equations") }
\end{aligned}
$$

Faults and stress: traction and stress

Physical Space

sigma1 $=100.0$
sigma3 $=50.0$
theta $=90$
sigman $=100.0$
tau $=0.0$

Faults and stress: traction and stress

Physical Space

sigma1 $=100.0$ sigma3 $=50.0$ theta $=0.0$
sigman $=50.0$ tau $=0.0$

Faults and stress: traction and stress

Faults and stress: traction and stress

Faults and stress: traction and stress

Physical Space

©

B

N40E Using both the Mohr circle and the
fundamental stress
equations, determine the normal and shear tractions on the two planes. For Mohr circle, use $1 \mathrm{~cm}=10 \mathrm{MPa}$) $\sigma 1=120 \mathrm{MPa}$

[^0]

Normal traction

$$
\begin{aligned}
& \sigma_{n}=\frac{\sigma_{1}+\sigma_{3}}{2}+\frac{\sigma_{1}-\sigma_{3}}{2} \cos 2 \theta \quad \sigma_{s}=\frac{\sigma_{1}-\sigma_{3}}{2} \sin 2 \theta \\
& F_{1}=\frac{120+40}{2}+\frac{120-40}{2} \cos 2 .-40 \quad=\frac{120-40}{2} \sin 2 .-40 \\
& =\frac{160}{2}+\frac{80}{2} \cos (-80)=\frac{80}{2} \mathrm{sin}-80 \\
& =80+40 \cdot 0.17=40 \cdot \sin -80 \\
& 80+6.9=-39.4 \mathrm{~m} / \mathrm{a} \\
& =87 \mathrm{mPa} \\
& F_{2}=\frac{120+40}{2}+\frac{120-40}{2} \cos 2.20=\frac{120-40}{2} \sin 2.20 \\
& =80 \quad 40 \cos 40=\frac{80}{2} \sin 40 \\
& =80 \quad 30.6 \\
& =110.6 \mathrm{mia}=40 \cdot 0.64 \\
& =25.7 \mathrm{mPla}
\end{aligned}
$$

Mohr Circle
$10 \mathrm{~mm}=10 \mathrm{mPa}$

Faults and stress: traction and stress

Figure 3.24 The center of the Mohr stress circle represents mean stress, which is the hydrostatic component of the stress field. Mean stress tends to produce dilation. The radius of the Mohr stress circle represents deviatoric stress, which is the nonhydrostatic component of the stress field. Deviatoric stress tends to produce distortion. The diameter of the Mohr stress circle represents differential stress. The larger it is, the greater the potential for distortion.

$$
\tau=\sigma_{\mathrm{s}}
$$

-Davis and Reynolds

STRESS REGIMES
 IN THE LITHOSPHERE

as indicated by laboratory experiments
-Engelder, 1993, Stress regimes in the lithosphere, Princeton Univ. Press

Fig. 1-6. The definition of stress regimes in the lithosphere based on the general types of failure encountered during laboratory rock mechanics experiments. Each rectangular box represents the cross section of a cylindrical sample during a polyaxial rock de formation experiment. In the laboratory, intact rock fails by three general mechanisms: crack propagation; shear rupture; and ductile flow. When subject to large shear stresses, joints and shear fractures are reactivated by frictional slip. Shear zones develop if ductile flow is localized. The four stress regimes of the lithosphere are identified by bold letters

Mohr circle for stress--three ways to do it

Feature Signs

Axes
Angle-physical space

Angle-Mohr space

Geometryphysical space

Johnson and Pollard
Tension positive (σ_{1} is max tension)
ts positive downward
tn tension to the right
γ measured between σ_{1} and n
(because it is a principal plane, $\mathbf{t}(\mathbf{n})=$ tn, and ts =0)
2γ measured counterclockwise from positive tn direction

$$
y, \sigma_{2}(\min \text { tension }=\max
$$

compression)

।

Geometry-
Mohr space

Davis and Reynolds

Compression positive (σ_{1} is max compression)
ts $=\sigma_{\mathrm{s}}$ positive upward
tn $=\sigma_{\mathrm{n}}$ positive right
θ measured between σ_{1} and

boundary

2θ measured clockwise from negative σ_{n} direction

```
y,}\mp@subsup{\sigma}{2}{\prime}(\mathrm{ max tension=min
compression)
    |
```


Suppe, Ragan (most common)

Compression positive (σ_{1} is max compression)
ts $=\sigma_{\tau}$ postivie upward
$\mathrm{tn}=\sigma_{\mathrm{n}}$ positive right
θ measured between σ_{1} and n
2θ measured counterclockwise from positive σ_{n} direction
$y, \sigma_{2}($ max tension $=$ min
compression)
1

Coulomb Law of Failure

Coulomb equation
$\tau_{\mathrm{c}}=\mathrm{c}+\tan \phi \sigma_{\mathrm{n}}$
Where
$\tau_{c}=$ critical shear stress required for faulting (shear strength)
$\mathrm{c}=$ cohesive strength
$\tan \phi=$ coefficient of internal friction $=\mu$

Faults and stress: traction and stress

Figure 6.67 Mohr diagram portrayal of the dynamic conditions of the sandbox experiment. (A) Differential stress conditions leading to normal faulting in the left-hand compartment. (B) Differential stress conditions leading to thrust faulting in the uctu right-hand compartment.

In the block below, σ_{1} is oriented north-south. The area is in a regime of strike-slip faulting. $\sigma_{1}=100 \mathrm{MPa}$ and $\sigma_{3}=50 \mathrm{Mpa}$, fault a strikes 015 , and fault \mathbf{b} strikes 085 .

a) What are the normal and shear tractions acting along the two faults?

万) Which is more likely to fail?
c) If you assume that Byerlees's law $\left(\tau=0.5+0.6 \sigma_{n}\right)$ holds, what would the strike of the optimally oriented fault be?

[^0]: $\sigma 3=40 \mathrm{MPa}$

