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Relationship between traction and stress
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By balancing the traction with stress, we can solve for the normal and

shear tractions as a function of the stress tensor components and the
orientation of the plane.

Cauchy’s equations:
— 2 .2 ;
O, =0y cos”0+0,,sin” 0+20,, cosfsinf

T=0, =ny(cos2 6 — sin* 9)+ (O'M —O'yy)cosasine
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G, is maximum compression
G, is minimum (in 3D)
O, is intermediate

Returning to Cauchy’s equations:

_ 2 ) | .
O, =04 cos” 0+0,, sin 6 +20,, cosfsinb

T=0,= O'xy(cos2 6 — sin” 9)+(0'xx —O'yy)COSBSiHQ

delete 0 components and use these identities:

cos? 9=l+-1-—00529
2 2

sin? Qzl—lsinZB
2 2

cosB@sinf = é—sin 260

~0'1+O'3 01 — 03
2

O1—03 .
T=0 =-—1—2——~§—s1n29

cos 26

Op

and o, =0,; 0,,=O;

0 is positive clockwise from the ¢, direction



Faults, stress, and tractions

Mohr Circle
Graphical construction that lets us visualize the relationship between
the principal stresses and tractions on a boundary (like a fault).
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0 measured positi\éoe C(pvl;lter clockwise from o, direction to normal of plane of interest
20 measure positive;(aockwise from o direction on Mohr circle



Christian Otto Mohr (October 8, 1835 —
October 2, 1918) was a German civil
engineer. In 1882, he famously developed the
graphical method for analysing stress known
as Mohr's circle and used 1t to propose an
early theory of strength based on shear stress.

http://en.wikipedia.org/wiki/Christian_Otto_Mohr
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Faults and stress:
traction and stress

O +0O 01 —0O
O, = 12 3 12 S cos 26

01 —03 .
T=04 = 12 3 sin 26

Equations of the Mohr Circle (also “Cauchy’s equations”)




Faults and stress:
traction and stress

Physical Space Mohr Space
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Faults and stress:
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Faults and stress:
traction and stress
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Physical Space

Faults and stress:
traction and stress
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o3=40 MPa

Using both the Mohr
circle and the
fundamental stress
equations, determine the
normal and shear
tractions on the two

planes. For Mohr circle,
use 1 cm =10 MPa)

c1=120 MPa
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Faults and stress:
traction and stress

Figure 3.24 The center of the Mohr stress
circle represents mean stress, which is the
hydrostatic component of the stress field.
Mean stress tends to produce dilation. The
radius of the Mohr stress circle represents
deviatoric stress, which is the nonhydrostatic
component of the stress field. Deviatoric
stress tends to produce distortion. The
diameter of the Mohr stress circle represents
differential stress. The larger it is, the greater
the potential for distortion.

T = O,

0,+0
Center=—1__"3 .

Mean Stress

(MPa) o

-Davis and Reynolds



STRESS REGIMES

IN THE LITHOSPHERE Reactivation
as indicated by laboratory experiments — [~ Shear
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Fig. 1-6. The definition of stress regimes in the lithosphere based on the general type
of failure encountered during laboratory rock mechanics experiments. Each rectangu=
lar box represents the cross section of a cylindrical sample during a polyaxial rock de
formation experiment. In the laboratory, intact rock fails by three general mechanisms:
crack propagation; shear rupture; and ductile flow. When subject to large shear
stresses, joints and shear fractures are reactivated by frictional slip. Shear zones de-
velop if ductile flow is localized. The four stress regimes of the lithosphere are identi=/
fied by bold letters.
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Mohr circle for stress--three ways to do it

Johnson and Pollard
Tension positive (o, is max tension)

ts positive downward

(n tension to the right

Y measured between ¢, and n
(because it is a principal plane, t(n) =
tn, and ts = 0)

2y measured counterclockwise from
positive tn direction
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Davis and Reynolds
Compression positive (0, is max
compression)
ts = ¢, positive upward
(n = g, positive right
0 measured between G, and
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20 measured clockwise from negative
o, direction
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Suppe, Ragan (most common)
Compression positive (G, is max
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Coulomb Law of Failure

Coulomb equation
T.=C+tan ¢ o,

Where

1. = critical shear stress
required for faulting (shear
strength)

¢ = cohesive strength

tan ¢ = coefficient of internal
friction = u
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FRIGTION MEASURED AT MAXIMUM STRESS
EXPLANATION

SYMBOL REFERENGE ROGK TYPE
. 2F Gronile |, froclured
v 20 Granile , ground surloce roﬁ\\
v 3 Limesione , Gabbro , Dunile N
a S Gronile , ground surfoce
" 6F Weber Sandslone , foulled
. 65 Weber Sandstone , sow cul
. 9 Gronodiorite
0 13 Gneiss and Mylonile
n 16 Plasler in joinl of Quarlz Monzonile . )
¢ 20 Quarlz Monzonile joinls '
. 25 Weslerly Granite , Ghlorile , Serpentinile, *

lilite , Koolinile , Halloysile , .
Montmorillonile , Vermiculile

26 Gronile

Figure 6.69 Plot of Byerlee's law of sliding
friction, which is based on hundreds of sliding

friction experiments on a wide variety of
rock types. (From Byerlee, J. D., Friction of
rocks, 1978, Pure and Applied Geophysics,
v. | 16, Birkhauser Verlag Ag, Basel,
Switzerland.)
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Faults and stress:
traction and stress
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Figure 6.67 Mohr diagram portrayal of the
dynamic conditions of the sandbox
experiment. (A) Differential stress conditions
leading to normal faulting in the left-hand
compartment. (B) Differential stress
conditions leading to thrust faulting in the
Uctu right-hand compartment.
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, In the block below, o, is oriented north-south. The area is in a regime of strike-slip
faulting. o, = 100 MPa and o, = 50 Mpa, fault a strikes 015, and fault b strikes 085.

N | -
\ | S - a) What are the normal and shear

tractions acting along the two faults?

a
*\* - \b b)_ Which is more likely to fail?

—>

X,
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¢) If you assume that Byerlees's law (t=0.5+ 0.6 G,) holds, what would the strike of the
optimally oriented fault be?
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