
Chapter 1

STRUCTURAL PLANES

1.1 INTRODUCTION

Especially in the early stages of an investigation of the geology of an area, much attention is paid
to determining and recording of the location and orientation of various structural elements. Planes
are the most common of these. They are also a useful starting point in the introduction to the
geometrical methods of structural geology.

1.2 DEFINITIONS

Plane: a flat surface; it has the property that a line joining any two points lies wholly on its surface.
Two intersecting lines define a plane.

Attitude: the general term for the orientation of a plane or line in space, usually related to geo-
graphic coordinates and the horizontal (see Fig. 1.1). Both trend and inclination are compo-
nents of attitude.

Trend: the direction of a horizontal line specified by its bearing or azimuth.

Bearing: the horizontal angle measured east or west from true north or south.

Azimuth: the horizontal angle measured clockwise from true north.

Strike: the trend of a horizontal line on an inclined plane. It is marked by the line of intersection
with a horizontal plane.

Structural bearing: the horizontal angle measured from the strike direction to the line of interest.

Inclination: the vertical angle, usually measured downward, from the horizontal to a sloping plane
or line.

True dip: the inclination of the steepest line on a plane; it is measured perpendicular to the strike
direction.
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2 CHAPTER 1. STRUCTURAL PLANES

Apparent dip: the inclination of an oblique line on a plane; it is always less than true dip.
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Figure 1.1: StrikeS, true dipδ (delta), apparent dipα (alpha) and structural bearingβ (beta).

1.3 DIP & STRIKE

The termsdip and strike apply to any structural plane and together constitute a statement of its
attitude. The planar structure most frequently encountered is the bedding plane. Others include
cleavage, schistosity, foliation and fractures including joints and faults. For inclined planes there
are specialdip and strike map symbols; in general each has three parts. The only exception is the
special case of a horizontal plane which requires a special symbol.

1. A strike line plotted long enough so that its trend can be accurately measured on the map.

2. A shortdip mark at the midpoint of one side of the strike line to indicate the direction of
downward inclination of the plane.

3. A dip angle written near the dip mark and on the same side of the strike line.

The most common symbols are shown in Fig. 1.2 and their usage is fairly well established by
convention. However, it is sometimes necessary to use these or other symbols in special circum-
stances, so that the exact meaning of all symbols must be explained in the map legend.

Attitude angles are also often referred to in text, although the usage is considerably less stan-
dard. There are two basic approaches. One involves the trend of the strike of the plane and the
other the trend of the dip direction. Each of the four following forms refers to exactly the same
attitude (for other examples see Fig. 1.3).

1. Strike notation

(a) N 65 W, 25 S: the bearing of the strike direction is65◦ west of north and the dip is25◦

in a southerly direction. For a given strike, there are only two possible dip directions,
one on each side of the strike line hence it is necessary only to identify which side by
one or two letters. If the strike direction is nearly N-S or E-W then a single letter is
appropriate; if the strike direction is close to the45◦ directions (NE or NW) then two
letters are preferred (see Fig. 1.3 for examples).
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Dip and strike of bedding

Overturned beds

Vertical beds, top to north

Horizontal beds

Dip and strike of foliation

Vertical foliation

Horizontal foliation

Dip and strike of cleavage

Vertical cleavage

Horizontal cleavage

Dip and strike of joints

Vertical joints

Horizontal joints

Alternative symbols Informal symbol with
bearing added (N 20 W)

7525

90

6550

20

35

60

Figure 1.2: Map symbols for structural planes.

(b) 295, 25 S: the azimuth of the strike direction is295◦ measured clockwise from north
and the dip is25◦ in a southerly direction. Usually the trend of the northernmost end
of the strike line is given, but the azimuth of the opposite end of the line may also be
used, as in 115, 25 S.

2. Dip notation

(a) 25, S 25 W: the dip is25◦ and the trend of the dip direction has a bearing of25◦ west
of south.

(b) 25/205: the dip is25◦ and the trend of the dip direction has an azimuth of205◦ mea-
sured clockwise from north. The order of the two angles is sometimes reversed, as in
205/25. To avoid confusion, dip angles should always be given with two digits and the
trend with three, even if this requires leading zeros.

As these dip and trend angles are written here the degree symbol is not included and this is a
common practice. However, this is entirely a matter of individual preference and taste.

The two forms of the strike notation are the most common with the difference usually depend-
ing on whether the compass used to make the measurements is divided into quadrants or a full
360◦ and on personal preference. The advantage of the quadrant method of presentation is that
most people find it easier to grasp a mental image of a trend more quickly with it.

The forms of the dip notation are more generally reserved for the inclination and trend of lines
rather than planes, although when the line marks the direction of true dip, it may apply to both.
The last method gives the attitude unambiguously without the need for letters and, therefore, is
particularly useful for the computerized treatment of orientation data. For this reason it is becoming
increasingly common to see the attitudes of planes written in this way.
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N 40 E, 36 SE N 35 W, 15 NE N 48 E, 8 NW N 28 W, 44 SW N 87 W, 32 S

SYMBOL

Strike (a)

Strike (b)

Dip (a)

Dip (b)

18

23

N 18 E, 23 E

36/130 15/055 08/318 23/108 44/242 32/183

 040, 36 SE 325, 15 NE 048, 8 NW 332, 44 SW 273, 32 S198, 23 E

36, S 50 E 15, N 55 E 8, N 42 W 23, S 72 E 44, S 62 W 32, S 3 W

Figure 1.3: Examples of the strike and dip notations.

It is essential to learn to read all these shorthand forms with confidence and to this end we
will use them in examples and problems. However, they are not always the best way of recording
attitude data in the field. It is a common mistake to read or record the wrong cardinal direction,
especially for beginners. For example, it is easy to write E when W was intended for a strike or
dip direction.

One way to avoid such errors is to adopt a convention such as theright-hand rule. There are
two versions.

1. Face in the strike direction so that the plane dips to the right and report that trend in azimuth
form.

2. Record the strike of your right index finger when the thumb points down dip (Barnes, 1995,
p. 56).

Alternatively, record the attitude by sketching a dip and strike symbol in your field notebook
and adding the measured bearing or azimuth of the strike direction (see the informal symbol in
Fig. 1.2).1 This permits a visual check at the outcrop — stand facing north and simply see that the
structural plane and its symbolic representation are parallel. Recording attitudes in this way also
reduces the chance of error when transferring the symbols to a base map.

Strike and dip measurements are commonly made with a compass and clinometer. A variety of
instruments are available which combine both functions. In North America, the Brunton Compass
is widely used. In Europe and elsewhere the Silva Ranger, Chaix and Freiberg compasses are fa-
vored (McClay, 1987, p. 18, 21). The methods of measuring attitudes in a variety of field situations
are given in some detail by Davis & Reynolds (1986, p. 662–669), McClay (1987, p. 22–30), and
Barnes (1995, p. 7–9).

The most direct method is to hold a compass directly against an exposed plane surface at the
outcrop. We illustrate the procedure using the Brunton Compass but the methods with the other

1It is not necessary to plot this strike line in your notebook using a protractor. With a little practice any trend line
can be sketched with an accuracy of±5◦ or better. In combination with the labeled strike direction this is sufficient.
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instruments are similar. The Freiberg compass is an exception because the dip and dip direction
are measured in a single operation, and this has some advantages.

1. Strike is measured by placing one edge of the open case against the plane and the compass
rotated until it is horizontal as indicated by the bull’s eye bubble (Fig. 1.4a). The measured
trend in this position is the strike direction.

2. Dip is determined by placing one side of the compass box and lid directly against the exposed
plane perpendicular to the previously measured strike. The clinometer bubble is leveled and
the dip angle read (Fig. 1.4b).

(a) (b)

Figure 1.4: Measurements with a Brunton Compass (from Compton, 1985, p. 37): (a) strike; (b)
dip.

1.4 ACCURACY OF ANGULAR MEASUREMENTS

The goal of making dip and strike measurements is to record an attitude which accurately repre-
sents the structural plane at a particular location. With reasonable care, horizontal angles may be
read on the dial of the compass to the nearest degree, especially if the needle is equipped with
damping. Vertical angles may also be read on the clinometer scale to the nearest degree, or better
if a vernier is used.

There are two reasons why such accuracy does not automatically translate into accurately
known attitudes. First, even if the plane is geometrically perfect it is not possible to place the
compass inexactly the correct position when making a measurement. Second, the present of local
irregularities means that a result will depend on the precise placement of the instrument on the
exposed surface. In everyday terms, the first is an error, while the second introduces an uncer-
tainty. In practice, however, it is difficult or impossible to separate these two effects. Thuserror
anduncertainty are essentially synonymous when applied to any scientific measurement (Taylor,
1997, p. 3).

It is, of course, easy to make amistake when measuring or recording an angle of dip or strike.
Almost everyone has had the unfortunat experience of finding an attitude which seems out of place
in a notebook or on a map. If the mistake is small it may be difficult to identify, but then its
presence may not make much difference. On the other hand, if the mistake is large, then some
effort should be made to avoid or correct it. There are statistical methods for identifyingoutliers
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and discarding them, but the question always remains: is the exception real or not? A better
approach is to identify them while it is still possible to correct it in the field. A good way to do this
plot the attitude symbols on a sketch map as they are made. Then seemingly anomalous attitudes
can be quickly confirmed or discarded by additional observations.

Because all measurements are subject to such errors or uncertainties there will generally be a
discrepancy between any two angles measured on the same plane. There are two main types of
errors:random andsystematic.

The difference between these two may be illustrated with a simple “experiment” consisting of a
series of shots fired at a target (Taylor, 1997, p. 95–96). Accurate “measurements” are represented
by shots which cluster around the center of the bull’s eye: they may tightly clustered (Fig. 1.5a)
or not (Fig. 1.5b). An important cause of random errors is the marksman’s unsteady hand. In
either case, if there is a sufficient number of shots and their distribution is truly random, the mean
location of the shots will define the center of the target with acceptable accuracy.

Systematic errors are caused by any process by which the shots arrive off-center, such as mis-
aligned sights. As before, the random component may be small (Fig. 1.5c) or large (Fig. 1.5d). In
both cases, the mean will depart significantly from the center of the target.

While the pattern of shots is a good way of illustrating the difference between random and
systematic errors, it is misleading in an important sense. Knowing the location of the bull’s eye is
equivalent to knowing the true value of the measured quantity. In the real world we do not know
this true value; indeed if we did we would not have to make any measurements. A more realistic
illustration would be to examine the pattern without the target. Then the random errors would be
easy to identify but systematic error would not be.2

(a) (b) (c) (d)

Figure 1.5: Combinations of small and large randomR and systematicS errors (after Taylor, 1997,
p. 95): (a)R small,S small; (b)R small,S large; (c)R small,S large; (d)R large,S large.

For horizontal trend angles measured in the field, systematic errors arise if the magnetic decli-
nation is improperly set on the compass or an incorrect angle is used to manually correct a reading.
The compass needle may also be deflected by magnetic materials, such as magnetite, in the rock
or a piece of magnetized iron, such as a rock hammer, near the compass. A similar effect may be
produced by the electromagnetic fields associated with nearby power lines. The standard approach
to controlling systematic errors is the use equipment which has been tested and calibrated, but this

2Then there is theTexas Sharpshooter Fallacy: a fabled marksman randomly sprays the side of a barn with bullets
and then paints a circle around a cluster. Epidemiologist call this fallacy to theclustering illusion, the intuition that
random events which occur in clusters are not really random events at all. To such clusters politicians, lawyers and,
regrettably, some scientists assign a causal relationship, such as a link of some environmental factor and a disease,
when they are actually due to the laws of chance (Carroll, 2003, p. 375).
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has rather limited application for the field geologist. With awareness and care, these systematic
errors may be minimized.

Random errors of both dip and trend arise from the actual process of making the measurements.
Even for a geometrically perfect plane, it is never be possible to align the compass and read the
anglesexactly. Further, inevitable natural irregularities on the surface of naturally occuring planes
make this process even more difficult. Measuring the attitude of a stiff field notebook, map case or
a small aluminum plate held tightly against the rock surface helps eliminates the effect of small-
scaled features.

There is also a way to reduce the effect of such irregularities. Stand back from the outcrop sev-
eral meters and determine the trend of a horizontal line of sight parallel to the bedding (Fig. 1.6a),
and then measure the inclination of the bedding perpendicular to the this line (Fig. 1.6b). Al-
though it takes practice to become proficient, this is probably the most accurate field method of
determining dip and strike at the scale of a single outcrop.

(a) (b)

Bedding plane
seen as a line

Underside
of bed

Level line of
sight to bed

Figure 1.6: Avoiding minor irregularities (Compton, 1985, p. 35): (a) sighting a level line; (b) dip
measured perpendicular to this line.

Because of such inevitable random errors there will generally be adiscrepancy between any two
measured values of the same angle on the same plane. To evaluate such random errors, the standard
procedure is to make multiple measurements. For dip angles or any such measured quantities, the
simplearithmetic mean x̄ of a series ofN measurementsx1, x2, . . . , xN is found from

x̄ =
x1 + x2 + · · · + xN

N
=

1

N

N∑

i=1

xi. (1.1)

This mean is almost always thebest estimate of the true value (Taylor, 1997, p. 10, 98, 137). That
is,

xbest = x̄.

The discrepanciesdi associated with a set of measurementsxi are then

di = xi − x̄, (i = 1 to N).

These are positive or negative, depending on whether the value ofxi is greater or less than̄x.

These discrepancies gives a valuable indication of the uncertainty associated with the measure-
ments (Taylor, 1997, p. 10). The measure of this uncertainty is most simply approximated as the
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magnitude of the largest discrepancy

∆x = |di|large.

The positive number∆x is termed theuncertainty, or error, or margin of error. Then the result of
any measurement is expressed in thestandard form as

(measured value ofx) = xbest ±∆x.

This means that we can be confident that the correct valueprobably lies betweenxbest − ∆x and
xbest + ∆x, though it ispossible that it lies slightly outside this range, absent systematic errors, as
we have been assuming.

While dip angles can be treated directly in this way, horizontal trend angles in general and
strike angles in particular present special problems and a different method for calculating their
mean direction must be used (see§7.4).

Rondeel & Storbeck (1978) performed a series of experiments to evaluate the magnitudes of
the dip uncertainties. Multiple measurements were made on a10 × 10 cm single, slightly irreg-
ular bedding plane surface which was rotated into different inclinations ranging from5–88◦. For
moderate to steep inclinations they found that 90% of the angles were within2◦ of the mean. For
bedding planes with greater irregularities, Cruden & Charlesworth (1976) found that the uncertain-
ties were also greater, and ranged up to about10◦. For more formal purposes, thesample standard
deviation is used to express the uncertainty and is defined as

σx =

√√√√ 1

N − 1

N∑

i=1

(di)2 =

√√√√ 1

N − 1

N∑

i=1

(xi − x̄)2. (1.2)

For largeN the denominatorN − 1 can be replaced withN (Taylor, 1997, p. 97–101), and this
equation then becomes the statement of theroot mean square (commonly abbreviated RMS) of the
deviations.3

In most general field mapping projects, we probably can accept carefully made single mea-
surements recorded to the nearest degree because the uncertainties are probably modest. However,
if these attitude measurements are to be used for special purposes, greater care and possibly other
methods may be required.

There are certain situations where the uncertainty may be much greater. The case of a gently
dipping plane poses special problems.

If the dimension of the outcrop is sufficiently large the inclination of a smooth plane as small
as one degree, then both the dip and the dip direction can be visually identified and estimated.
However, if the plane is irregular it is possible that one or more measurements might yield a result
such that∆x > x, implying that the dip may be in the opposite of the observed direction, which
would be a huge error.

Further, the measurement of the strike direction on such a gently dipping plane, even a slightly
incorrect placement of the compass may result in a large error. By definition, the strike is the

3For largeN dividing byN − 1 or N makes almost no difference. The advantage of usingN − 1 is that it gives a
larger estimate of the uncertainty, and especially for measurements made in the field environment this is a good thing.
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trend of a horizontal line on an inclined plane. If the compass is not exactly horizontal then a
direction other than the true strike will be recorded. The geometry of this situation is shown in
Fig. 1.7a where amaximum operator error εo, the largest angular departure from horizontal, goes
uncorrected. The result is that a trendOS ′ rather than the true strikeOS is recorded. The angle
between these two directions is themaximum strike error εs and its magnitude as a function of
the dip angleδ may be evaluated. The three right-triangles in this figure yield the trigonometric
relationships

w = d/ tan δ, l = d/ tan εo, sin εs = w/l.

Substituting the first two into the third gives4

sin εs =
tan εo

tan δ
(1.3)

This result, first obtained by Müller (1933, p. 232; see also Woodcock, 1976), is solved for values
of εs and the results displayed graphically forεo = 1–5◦ in Fig. 1.7b. It is important to note that
for very small dip angles, the maximum possible strike error is large and approaches90◦ asδ → 0.
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Figure 1.7: Maximum strike error: (a) geometry; (b)εs as a function of dip for values ofεo = 1–5◦.
(The inset shows an exampleεo = 2◦, δ = 5◦, with the result thatεs ≈ 24◦).

1.5 GRAPHIC METHODS

Indirect methods are also available for determining the various angles and these are the subject of
the remainder of this chapter. All the techniques dealt with here are concerned with the relation-
ships between the components of the attitude of planes — the angles of true and apparent dip, and
the strike.

4As we will see later, this equation is just a specialized version of a more general description of the relationship
between dipδ, apparent dipα and structural bearingβ (compare Eq. 1.7).
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Of several possible approaches to solving these problems we choose at the outset an entirely
graphical technique — the method oforthographic projection (see Appendix A). There are two
reasons for this choice. First, with it we may readily and simply obtain solutions to a wide variety
of problems. Second, it allows the various components of the problems to be visualized in a three-
dimensional setting. This visualization is of crucial importance in developing the ability to solve
geometrical problems in geology.

By way of introduction, consider a simple geological situation shown in the two block diagrams
of Fig. 1.8. In order to follow the description of their geometric properties it will be helpful to
assembleBlock A andBlock B at the end of the book and have them in front of you.

Problem

• The trace of an inclined plane is exposed on a flat, horizontal surface. The plane strikes
east-west and dips36◦ to the north. Construct a vertical section showing the angle of true
dip. What is the depth to this plane at a map distance ofw = 100 m measured perpendicular
to the strike line?

(a) (b)

δ

α

N

w

l

d

d

O

A

B

O

X

Y

Figure 1.8: Block diagrams: (a) true dipδ; (b) apparent dipα.

Approach

• On the top of the block the trace of the inclined plane is a line of strike (Fig. 1.8a). The
goal is to construct a vertical section showing the angle of true dipδ. To do this we imagine
standing at a pointO on the surface trace of the plane and then walking a distancew = 100 m
due north to another surface pointA. As we make this traverse, the vertical distance to the
inclined plane steadily increases from zero to a depthd directly belowA. With the dip angle
and the traverse length known, we can easily make a scaled drawing of the top surface of
the block showing its proper dimensions. To depict the vertical side, we imagine turning it
upward as if it were hinged along edgeOA. This hinge is called afolding line, abbreviated
FL (see§A.2). We can now easily construct the required view.
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Figure 1.9: True dip: (a) map; (b) section withOA asFL; (c) visualization.

Construction

1. On a map view draw an east-west line of strikeS and locate pointO on it. FromO draw
a line in the dip direction to locate pointA at a distance ofw = 100 m using a convenient
scale (Fig. 1.9a).

2. With OA as aFL draw a line on this now upturned section making angleδ = 36◦ with the
horizontal. This is the required trace of the inclined structural plane (Fig. 1.9b).

3. At surface pointA on this section, draw a vertical line downward to intersect the trace of the
inclined plane at pointX. DistanceAX is the depthd = 73 m to the plane at this point.

Accuracy is an important part of these constructions (see§A.3 for some general guidelines).
Its particularly important that lines, such asOA, be long enough so that their orientations can be
measured easily to within one degree. In the previous problem this can be accomplished by using
a scale of10 mm = 10 m. As a general rule, a single diagram should occupy the central part of a
letter-size sheet of paper. Beginners commonly make their constructions too small.5

A very useful aid in this kind of problem is to actually bend the drawing along the folding line
over the edge of a table top (Fig. 1.9c). You can then actually see the relationship between the map
and the vertical section in three dimensions.

Once this three-dimensional visualization can be made with some confidence, we can, of
course, relate the angleδ and the lengths of sidesw and d of the vertical right-triangleOAX
with the simple formula

tan δ = d/w. (1.4)

A closely related situation involves depicting the trace of an inclined structural plane on an
oblique vertical section as illustrated in the block diagram of Fig. 1.8b.

5All of the figures here and throughout the book were originally constructed at such a scale, but they have been
reduced to conserve space.
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Problem

• Depict the same north-dipping structural plane on a vertical section whose trend is N 60 W.
In this direction the apparent dipα = 20◦. What is the depth to the plane at a horizontal
distance ofl = 200 m from the strike line measured in this oblique direction?

Approach

• In similar fashion, the goal now is to construct the vertical section showing the angle of
apparent dip. As before, we imagine starting at a pointO on the strike line and walking in
this direction (Fig. 1.8b). As we do this the depth to the plane now increases from zero to
the same depthd at pointY directly below surface pointB. With the known apparent dip
angle and the traverse length we draw the vertical section using as the folding lineOB.

Construction

1. Through surface pointO on an east-west line of strikeS draw a line in the direction N 60 W
and on it locate pointB at a distancel = 200 m using a convenient scale (Fig. 1.10a).

2. With OB as FL draw a line inclined at the angleα = 20◦ (Fig. 1.10b). A vertical line
downward atB then intersects this inclined line at pointY . DistanceBY is the depth
d = 73 m to the plane.

l w

AB

O

β

S

(a) (b)

l w

A
B

O

β

S

α

d

Y

36

N FL--

Figure 1.10: Apparent dip: (a) map; (b) section withOB asFL.

Again, as an aid to visualization we may convert this drawing to a three-dimensional block
diagram by folding the paper over the edge of a table top along theFL. We may also relate the
three elements of the vertical right-triangleOBY with the formula

tanα = d/l. (1.5)
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Note that the essential features of these oblique sections remain the same no matter how the
map is oriented. For this reason it is convenient to express the trend of the apparent dip relative to
the strike direction. For this reason we refer to this angleβ as thestructural bearing of the line.
The lengthl of the oblique traverse required to arrive atB can be obtained from the horizontal
right-triangleOAB with

sinβ = w/l. (1.6)

1.6 FINDING APPARENT DIP

In the previous problem, the apparent dip was given. However, this angle cannot always be mea-
sured in the field. If inclined planes are to be depicted on such oblique sections we need a method
for finding it.

Problem

• If δ = 36◦ andβ = 30◦, what isα?

Y

B A X

O

w
l

d

36

S2

S1

d

α

δ

β

N
FL2 --

F
L1 --

Figure 1.11: Apparent dip from true dip and strike.

Approach

• The solution of this problem involves two steps: first draw the true-dip section (Fig. 1.10a);
then draw the apparent-dip section (Fig. 1.10b). As is the general practice we combine the
map and sections on a single diagram. This eliminates the need to replicate most angles and
lengths and this reduces the chance of error.

Construction

1. Through a pointO on strike lineS1 draw a line in the dip direction (Fig. 1.11). On this line
locate surface pointA at an arbitrary but conveniently large distancew.
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2. Construct a vertical section withOA asFL1 showing the trace of the inclined plane at angle
δ = 36◦ and thus determining the depthd of pointX belowA.

3. Through surface pointA, draw a second strike lineS2.

4. A line from pointO making angleβ = 30◦ with S1 intersectsS2 at surface pointB.

5. Construct a second vertical section withOB asFL2 to locate pointY at thesame depth
d below B. ThenOY represents the trace of the plane and its inclination is the angle of
apparent dip.

Answer

• The angleBOY is α = 20◦.

Beginners are often confused by this jumping back and forth between map and section on the
same drawing. Folding the drawing over the edge of a table top is a powerful aid in distinguishing
the two distinct views. Using different colors for lines on the map and on the section also helps.

Several additional points should be noted. First, we need never know the actual depthd. Its
scaled length may be transferred directly from sectionsOA to OB on the drawing with compass
or divider. Second, in all such constructions, the direction of upward folding is immaterial, though
it is usually best to choose it in the direction of the greatest open space on the drawing in order to
avoid interfering lines.

As defined and used here, the angle of apparent dip is unambiguous and with reasonable care
no difficulties should be encountered. There are, however, some situations where an “apparent”
apparent dip may be observed (see Exercise 1.6) and this may be confusing. For this reason some
prefer to speak of adip component rather than an apparent dip, as we will do in§1.9.

1.7 ANALYTICAL SOLUTIONS

By combining the two-dimensional views of maps and sections, the methods of orthographic pro-
jection are an invaluable tool in learning to visualize the geometry of structures in three dimensions.

Analytical solutions also have their place. A word of caution: both the calculator and computer
do exactly what they are told and it is remarkably easy to enter the wrong number, use the wrong
parameter or the wrong formula. The invariable result is the display of an impressive-looking
number which is utterly wrong. Be careful!

The present problem involvingα, β andδ may be solved with the aid of a trigonometric equa-
tion (Herold, 1931). From Eq. 1.4w = d/ tan δ and from Eq. 1.5l = d/ tan α; substituting these
into Eq. 1.6 and rearranging yields

tanα = tan δ sinβ (1.7)
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Obtaining an answer to this type of problem is a procedure called, fondly,plug andchug. Plugging
in the valuesδ = 36◦ andβ = 30◦ gives

tanα = (0.72654)(0.50000).

Chugging out these values, your calculator displays

tan α = 0.36327 or α = 19.69463.

Now what do we write down? For a proper answer we need two things: a way of identifying the
figures which are significant, and then a way of eliminating the non-significant ones.6

As we have seen in§1.4, there is an inevitable uncertainty associated with any measured angle;
we expressed such an angle together with its uncertainty in the formx±∆x. On the other hand, if
we represent an angle by a single number, as we almost always do, there is animplied uncertainty.
For example, consider the angleδ = 36◦: As written, this is taken to mean that the angle which
best representsδ is probably closer to 36 than to 35 or 37, that is, it lies in the range36 ± 0.5◦.
This in turn means that the uncertainty is at least0.5. This number is called the impliedabsolute
uncertainty because it is expressed in the same units as the measured value.

We need a way of insuring that any calculated number we use takes advantage of the informa-
tion content of the original measurement, while at the same time avoids any suggestion that it is
more accurate than is justified. We do this by retaining only the significant figures and there are
several convenient, well-establishedRules of Thumb for accomplishing this.

1. When numbers are added or subtracted, the result should have the same number of decimals
places as the number with the fewest decimal places.

2. When numbers are multiplied or divided, the result should have the same number of signifi-
cant figures as the number with the fewest significant figures.

3. The presence of zeros requires special care. All these numbers have two significant figures:
20, 2.0, 0.20, 0.020, 0.0020.7 Sometimes there is a question of just how many significant
figures are there — how many are there in320? A simple way of resolving this ambiguity is
to write 320 = 3.2 × 102 or 320 = 3.20 × 102, depending on what is intended.

4. Exact numbers are treated as if they have an infinite number of significant figures (2 andπ
in the expression2πr are examples).

Next, we need to have a systematic way of eliminating the non-significant figures. The process
of doing this is calledrounding off, which is simply a way of estimating or approximating the value
of the final number as accurately as possible. First, we define therounding digit as the rightmost
significant number. Then the general rules are:

6Vacher (1998a) gives a good treatment of the use and abuse of significant figures.
7We use the International System of Units (SI) throughout the book (for more details see

http://physics.nist.gov/cuu/). Its application here is the rule that a zero should be placed in front of
the decimal marker in decimal fractions (for example2/100 is written as0.02 not .02).
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1. If the number just to the right of the rounding digit isless than 5,round down by dropping
all the non-significant figures. The number is now slightly less that the calculated one.

2. If the number just to the right of the rounding digit isgreater than 5,round up by adding1 to
the rounding digit and then dropping the non-significant figures. The number is now slightly
greater than the calculated one. Note that rounding9 up gives10, not0.

3. If the number just to the right isequal to 5 then there are two cases.

(a) If the numbers following the5 are all zeros, or there are no numbers round so that the
rounding digit is even, that is, round up if it is odd and down if it is even. Zero is treated
as even for this purpose. This practice insures that on average we round up or down
half of the time.

(b) If there are any non-zero numbers to the right of the5 this means that the total number
is greater than5, so always round up.

In our problem the specified values ofβ andδ have only two significant figures, the answer
should also have only two significant figures. Rounding then givesα = 20◦, which is the same as
obtained graphically.

Unfortunately, these conventional rules sometimes gives misleading uncertainties. This is es-
pecially the case then numbers are multiplied or divided. An effort to improve the rounding rules
is described by Mulliss & Lee (1998) and Lee, et al. (2000).8 A workable alternative is to simply
accept the fact that these rules are, and were always meant to be, only approximate (Earl, 1988).

An additional complication occurs when numbers are combined: the uncertainties are propa-
gated to the final answer. An investigation of such errors is a superior way of evaluating uncertain-
ties, and we return to this important matter in§2.10.

1.8 COTANGENT METHOD

There is a useful short-cut method for determining the relationships betweenα, β andδ which
combines a simple geometrical construction with trigonometric data (Kitson, 1929).

Problem

• If δ = 36◦ andβ = 30◦, what isα?

Construction

1. From pointO on strike lineS1 measure distancecot δ = 1/ tan δ = 1.37638 in the true dip
direction using a convenient scale and plot pointA (Fig. 1.12a).

8These two articles can be found athttp://www.angelfire.com/oh/cmulliss/index.html.
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2. Construct strike lineS2 through pointA parallel toS1.

3. An oblique line throughO making an angleβ with S1 intersectsS2 at pointB.

4. Using the same scale, measure distanceOB = cotα.

Answer

• LengthOB = cot α = 2.75 and thereforeα = arctan(1/2.75) = 20◦.

In problems such as these which involve lengths calculated from angles, the plots and measure-
ments should generally be accurate to at least two decimal places so that angles can be determined
to the nearest degree. There are, however, some situations where greater accuracy is desirable.

(a)

O

AB

O

AB

(b)
β β

S1

S2

S1

S2
N

cot α
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t  

δ

co
t  

δ

cot α

Figure 1.12: Cotangent method: (a) apparent dip; (b) structural bearing.

In terms of the fully graphical technique with folding lines, the use of the cotangent function
is equivalent to choosing depthd = 1. This short-cut gives a solution more quickly, while still
retaining the visual advantages of the completely graphical approach. It is especially useful when
dealing with small dip angles which are difficult to construct accurately at any reasonable scale.

If an apparent dip is known, it is a simple matter to reverse this construction to find the angle of
true dip. A closely related problem involves finding the structural bearing of a line whose apparent
dip angle is specified.

Problem

• If δ = 36◦ andα = 20◦, what isβ?

Approach

• To determine the structural bearing of a line we must construct the horizontal right-triangle
OAB of Fig. 1.12a. We may easily find the length of sideOB from the angle of apparent
dip. The problem is then reduced to discovering its trend. This may be done simply with the
cotangent method.
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Construction

1. On a map draw a strike lineS1 and lineOA in the direction of true dip (Fig. 1.12b).

2. In this dip direction measure a distanceOA = cot δ using a convenient scale. ThroughA
draw a second strike lineS2.

3. We now need a line whose length is equal tocotα using the same scale. It does not matter
where we draw this line, but it is convenient to measure it along the existing lineS1.

4. With pointO as center and lengthcotα as radius, swing an arc to locate pointB onS2. Line
OB is then the trend of the line of apparent dip and the angle it makes withS1 andS2 is β.

Answer

• The structural bearingβ = 30◦. Note that two trends satisfy this angle, N 60 W and N 60 E.

1.9 TRUE DIP & STRIKE

In some field situations it may not be possible to measure the true dip and strike directly. However,
if apparent dips in two different directions are known, the attitude of the plane can be determined.

Problem

• From the two apparent dips20/296 and30/046 determine the true dip and strike of the plane.

Approach

• Two lines on the plane whose inclinations are the apparent dip anglesα1 andα2 intersect at
a point. Three points determine a plane, so two additional points must be found. A second
point is located from a vertical triangle containing one of the apparent dips using a folding
line. A third point, associated with the second apparent dip, could be found in like manner.
However, it is advantageous to locate this third point at the same elevation as the second. A
line joining these points of equal elevation is, by definition, a line of strike. The true dip is
then measured perpendicular to this line.

Construction

1. From a local originO plot the trends of the two apparent dip directions in map view (Fig. 1.13).

2. Construct vertical sections in each of these apparent dip directions.
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(a) With the first line asFL1 locateB1 at an arbitrary distancel1. Construct the vertical
triangle B1OY1 using α1 and thus determine the depthd to Y1 on the plane below
surface pointB1.

(b) With the second line asFL2, construct the vertical triangleB2OY2 usingα2. This time
the traverse lengthl2 is determined by using the same depthd and this locates surface
pointB2.

3. BecauseY1 andY2 have identical depths below the common pointO they also have equal
elevations. A line through the two corresponding surface pointsB1 andB2 is then a line of
strike.

4. FromO a line perpendicular to the strike and intersecting it at pointA establishes the direc-
tion of true dip. At the same depthd belowA, pointX lies on the horizontal lineY1Y2. With
this true dip direction asFL3 locateX at the same depthd belowA. AngleAOX is the true
dip angle.

Answer

• The plane strikes east-west and dips40◦ north.

O

d

dX

d

B1

Y1

B2

Y2

l1 l2

A

α2

α1

δ

N

F
L3 --

-- 
FL2

 

FL1 --

Figure 1.13: True dip and strike from two apparent dips using folding lines.

This type of problem may be solved even more quickly by the cotangent method. This is
particularly useful in situations where measurements have been made by tape because they do not
have to be converted to degrees (Rich, 1932). For example, if the map distancel and the vertical
distanced are measured then

cot α = l/d,

and this length can be used directly to construct a diagram. This is also a useful way of handling
small dip angles which are difficult to plot accurately at any reasonable scale.

Problem

• From the two apparent dips20/296 and30/046 determine the true dip and strike of the plane
using the cotangent method.
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Construction

1. In map view, plot rays from a single pointO in each of the two apparent directions (Fig.
1.14).

2. Locate pointB1 at a distancel1 = cotα1 = 2.74748 and pointB2 at a distancel2 = cotα2 =
1.73205 along their respective rays using a convenient scale.

3. LineB1B2 represents the strike direction.

4. The perpendicular distanceOA to this strike line iscot δ = 1.19 using the same scale.

Answer

• The strike is east-west and the dipδ = arctan(1/1.19) = 40◦ due north.

AB1 B2

O

cot α
1 co

t α 2

co
t δ

N

Figure 1.14: Dip and strike from two apparent dips by the cotangent method.

1.10 DIP VECTORS

An alternative way of representing and manipulating angles of true and apparent dip is with vectors
(Harker, 1884; Hubbert, 1931). Not only does this make use of the well-established concepts
and methods of vector algebra, but it also opens up other possibilities which we explore in later
chapters. Accordingly, we represent the attitude of a inclined plane on a map with thetrue dip
vector D. This vector is horizontal and points in the direction of true dip. Its magnitude or length
is equal to the slope of the dip angle

D = tan δ. (1.8a)

Similarly, we define the magnitude of theapparent dip vector A as

A = tan α. (1.8b)

These vectors, like the conventional dip and strike symbols, are two-dimensional representations
of lines on an inclined plane.
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We may now determine the angle of apparent dip in any direction specified by a unit vectorû
from thescalar or dot product of D andû. By definition

A = D · û = Du cos φ (1.9)

whereφ is the angle betweenD andû. Geometrically, the scalar product represents magnitude of
the projection of one vector onto another (Halliday & Resnick, 1978, p. 22). BecauseD = tan δ
andu = 1, Eq. 1.8 becomes

tanα = tan δ cosφ (1.10)

Becauseφ = 90 − β this is equivalent to Eq. 1.6.

Problem

• If δ = 36 andφ = 90◦ − β = 60◦, what isα?

Construction

1. From a pointO drawD in the dip direction with scaled lengthtan δ = 0.72654 (Fig. 1.15a).

2. Vectorû from O with unit length and making an angle ofφ with D represents the direction
of A.

3. The projection ofD ontoû fixes the magnitude ofA.

Answer

• A = tan α = 0.36 and thereforeα = 20◦. As this construction shows,A is clearly a
component of D.

We can, of course, reverse this construction to determine the magnitude ofD and the angle it
makes witĥu from a known apparent dip vectorA (Fig. 1.15b).

A straight-forward extension of this construction then allows the true dip vectorD to be found
from two apparent dip vectorsA1 andA2. The following procedure solves the problem of Fig. 1.13
or Fig. 1.14.

Problem

• From apparent dip vectorsA1(20/296) andA2(30/046) find the true dip vectorD.
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Figure 1.15: Dip vectors: (a)A from D; (b) D from A.

Construction

1. In map view draw vectorsA1 andA2 radiating from pointO with lengthsA1 = tanα1 =
0.36397 andA2 = tanα2 = 0.57735 using a convenient scale (Fig. 1.16).

2. Draw perpendiculars from the tips of each of these apparent dip vectors.

3. These projection lines intersect to locate the tip of the dip vectorD and its scaled length is
tan δ = 0.84.

Answer

• The dip vectorD makes an angleφ1 = 64◦ with A1 andδ = arctan(0.84) = 40◦.

This vector approach also leads to a simple analytical solution. Representing the two apparent
dips by vectorsA1 andA2 then

tanα1 = D · û1 and tan α2 = D · û2

where the unit vectorŝu1 andû2 represent the directions of the known apparent dips. Labeling the
angles which the unknown vectorD makes with each of theseφ1 andφ2 then with Eq. 1.9 we have

tan α1 = tan δ cosφ1 and tanα2 = tan δ cos φ2.

Solving each fortan δ and equating the two results gives

tan α1

cosφ1
=

tan α2

cosφ2
or tan α2 cosφ1 = tan α1 cos φ2. (1.11)

Labeling the total angle between̂u1 and û2 asφ we can express angleφ1 in terms ofφ andφ2.
There are two cases.
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Figure 1.16: Vector solution of true dip and strike.

1. If D lies betweenA1 andA2 (Fig. 1.17a), thenφ = φ1 + φ2 or φ2 = (φ − φ1).

2. If D lies outsideA1 andA2 (Fig. 1.17b), thenφ = φ1 − φ2 or φ2 = (φ1 − φ).

With the identity for the cosine of the difference of two angles yields the identical results

cosφ2 = cos(φ − φ1) = cos(φ1 − φ) = cosφ cos φ1 + sinφ sinφ1.

Substituting this result, Eq. 1.10 becomes

tan α2 cos φ1 = tanα1(cos φ cos φ1 + sinφ sin φ1).

We solve this forφ1 by expanding, dividing through bycos φ1 and rearranging. The result is

tan φ1 =
tan α2

tan α1 sinφ
− 1

tanφ
(1.12)

With bothφ1 andα1 known, the true dip can be found from (see Eq. 1.9)

tan δ =
tan α1

cosφ1

(1.13)

For Case 1 (Fig. 1.17a), from the previous problem,α1 = 20◦, α2 = 30◦ andφ = 110◦ and we
find thatφ1 = 64◦ andδ = 40◦.

For Case 2 (Fig. 1.17b),α1 = 20◦, α2 = 30◦ andφ = 18◦ and we find thatφ1 = 64◦ and
δ = 40◦. An ambiguity may arise in this case. By labeling the apparent dip angles so thatα1 < α2

the angleφ1 is always measured fromA1 towardA2 and this avoids any problem.
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Figure 1.17: Analytical solution of the problem of true dip and strike: (a) Case 1; (b) Case 2.

1.11 THREE-POINT PROBLEM

These methods can also be used to determine the attitude of a plane if the location ofthree points
on it are known.9 It is convenient to label the highest pointO. Then the map distancesl and
elevation difference∆h to each of the other points, the apparent dip in each of these directions is
calculated using

tan α = ∆h/l or α = arctan(∆h/l). (1.14)

With bothα1 andα2 known, the procedure is then just as before.

In the special case of small elevation differences over large distances, a satisfactory solution
requires that the locations of the three points be very accurately known. This can be accomplished
with modern electronic surveying equipment.10

In these circumstances a graphical solution would require a very large drawing as well as large
drafting tools and this is not practical.

Problem

• Three points are located on a structural plane. From the base pointO map distancel1 and
l2 and elevation difference∆h1 and∆h2 together with the trendst1 andt2 to pointsP1 and
P2 are measured using an electronic surveying instrument (see Table 1.1 and Fig. 1.18a).
Determine the dip and strike of the plane.

9Additional details of this three-point problem are treated in Chapters 3 and 7.
10The electronictotal station is a distance measurement device based on a phase comparison of reflected light

from a semi-conducting laser, and an electronic theodolite for measures angles, together with the attendant electronics
to reduce and digitally record the data, as well as compute the coordinate geometry. For a typical instrument, the
standard deviation of a length measurement is±2 mm+2 parts per million of the measurement length, and the angular
measurement has a standard deviation of±3 seconds of arc. For a 1 km measurement, the range has a standard
deviation of±4 mm. Angles are less precisely determined:±24.4 mm in radial distance normal to the measurement
direction. For more information seewww.leica-geosystems.com and click on Products.
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l ∆h t
P1 983.3 m −24.7 m 23.8◦

P2 1563.6 m −48.3 m 76.4◦

Table 1.1: Data for the three-point problem.

Answer

• From the measured data calculate the magnitudes of the apparent dip vectors in the directions
OP1 andOP2 using Eq. 1.12:tan α1 = 24.7/983.3 = 0.0251 (α1 = 1.4839) andtan α2 =
48.3/1563.6 = 0.0321 (α2 = 1.8406). The angle between these two apparent dip vectors
φ = t2 − t1 = 52.6◦ (Fig. 1.18b). Using these values in Eq. 1.11 we findφ1 = 40.2255◦.
Then Eq. 1.12 givesδ = 1.88◦ (with three significant figures in the input data, the three
figures in this answer are also significant).
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Figure 1.18: Three-point problem: (a) map of surveyed points; (b) apparent dip vectors.

1.12 OBSERVED APPARENT DIPS

The attitude of a structural plane is based on field observation and there is a case that requires
special care. Suppose that the trace of a dipping plane is exposed on a vertical plane. With a line of
sight perpendicular to this exposure, the observed angle is, in general, an apparent dip. However,
if the line of sight is oblique, either to the right or to the left, the observed angle is no longer the
apparent dip but rather an “apparent” apparent dip. From Fig. 1.19 we have

h = l tan α, w′ = w sinβ, tan α′ = h/w′,

whereα is the apparent dip,w is the oucrop width,h is the outcrop height,h′ is the apparent height
seen in the oblique view,α′ is the observed angle andβ is the angle the line of sight makes with
the exposure plane. Substituting the first two relationships into the third yields

tanα′ =
tan α

sinβ
. (1.15)
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Figure 1.19: Observed apparent dip: (a) direct view of vertical exposure plane; (b) top view of
exposure and oblique line of sight in the horizontal plane; (c) observed angle of inclination.

Fig. 1.21a is a graph of this equation, where it can be seen that the observed angleα′ is always
greater thanα and that small angles are distorted relatively more.

Similarly, if the line of sight lies in a vertical plane perpendicular to the exposure but oblique to
the plane of the exposure, the observed angle again not the apparent dip. From Fig. 1.20 we have

w = h/ tan α, h′ = h sin γ, tan α′ = h′/w,

whereγ is the angle the line of sight makes with the exposure plane andh′ is the apparent height.
Substituting the first two expressions into the third yields

tan α′ = tanα sin γ. (1.16)

Fig. 1.21b is a graph of this equation where it can be seen that the observed angle is always less
thatα and large angles are distorted relatively more.
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Figure 1.20: Observed apparent dip: (a) direct view of vertical exposure plane; (b) side view of
exposure plane with oblique line of sight in vertical plane; (c) observed angle.

More generally, if the line of sight is neither horizontal nor in the plane perpendicular to the
exposure the resulting observed angle is mixed — for some apparent dip angles and certain oblique
lines of sight the observed angle may be either less or greater. The essential point is that if you find
yourself making such observations be careful.

1.13 EXERCISES

These exercise problems are meant to introduce you to the power of graphic methods in geology
and to help you learn the basic geometric concepts of structural geology and “see” in 3D. Neat-
ness in the constructions is important. Showing all your construction lines and writing a brief
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Figure 1.21: Observed apparent dip: (a)α′ as a function ofβ; (b) α′ as a function ofγ.

explanation of your steps will help make things clearer (such notes will also be an aid for future
reference).

1. Using the following data determine the unknown component graphically, and check your
results trigonometrically. Each graphical result should be within1◦ of the calculated value.
If it is not then repeat your construction using greater care, making it larger, or both.

(a) If the attitude of a plane is N 75 W, 22, that is the apparent dip in the direction N 50 E?

(b) An apparent dip is 33, N 47 E, and the true strike is N 90 E. What is the true dip?

(c) The true dip is40◦ due north. In what direction will an apparent dip of30◦ be found?

2. A certain bed dips40/000. In what direction will the apparent dip be exactly half as great.
Will this same relationship hold if the bed dips10◦, 20◦, 50◦, or 80◦? If not, why not?

3. Three pointsA, B andC on an inclined plane have elevations of 150 m, 75 m and 100 m
respectively. The map distance fromA to B is 1100 m in a direction of N 10 W, and fromA
to C is 1560 m in a direction of N 40 E. What is the dip and strike of the plane? (Hint: use
Eq. 1.3 to determine two apparent dips).

4. The most important need for the apparent dip arises during the construction of structure
sections. Fig. 1.19 is a simple geology map of an inclined sequence of sedimentary strata
intruded by a basalt dike and the whole cut by a fault. Construct a vertical section along the
line XX ′ showing the traces of the three structural planes with the correct inclination and
proper position.
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5. What is the maximum potential error in determining the strike direction if the dip is5◦ and
the maximum operator error is2◦?

X X'

Figure 1.22: Construction of a cross section from a simple map of dipping planes.

6. Using the following data determine the unknown component graphically and check your
results trigonometrically. Each graphical result should be within1◦ of the calculated value.
If it is not, then repeat your construction using greater care, making it larger, or both.

(a) If the attitude of a plane is N85E 25NW, what is the apparent dip in the direction N20E?

(b) If the strike of a bed 350 and the apparent dip 35 in the direction 300, what is the true
dip.

(c) If the strike and dip of the bed (N45E 30SE) what is the apparent dip in the direction
S25W.

7. A distinctive sandstone bed crops out at three localities in a corner of the Edmundsville
Quadrangle. Outcrops A and B are on the 240-m contour line, and point C is on the 170-m
contour line. Outcrop B is 500 m to the N40E of outcrop A, and outcrop C is 250 m to
the N20W of outcrop A. Assuming that the sandstone is homoclinal (constant dip), what
is its attitude? 1) Using the following data determine the unknown component graphically
and check your results trigonometrically. Each graphical result should be within 1 of the
calculated value. If it is not, then repeat your construction using greater care, making it
larger, or both. a) If the attitude of a plane is N85W 19NE, what is the apparent dip in the
direction N40W? b) Given the strike of a bed 350 and the apparent dip 25 in the direction
280, determine the true dip. c) Given the strike and dip of the bed (N85W 30SW) determine
the apparent dip in the direction S60W. 2) A distinctive sandstone bed crops out at three
localities in a corner of the Edmundsville Quadrangle. Outcrops A and B are on the 240-m
contour line, and point C is on the 180-m contour line. Outcrop B is 400 m to the N40E of
outcrop A, and outcrop C is 240 m to the N20W of outcrop A. Assuming that the sandstone
is homoclinal (constant dip), what is its attitude?

8. On the attached map, the top of a dolomite unit crops out at points G and H. It is encountered
in the drillhole at point I with an elevation of 3000 ft. What is its attitude?
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9. Three points A, B, C on an inclined plane have elevations of 150 m, 75 m, and 100 m
respectively. The map distance from A to B is 1100 m in a direction of N10W, and from
A to C is 1560 m in a direction of N40E. What is the strike and dip of the plane? Solve
graphically or analytically.

10. A plane is defined by apparent dip vectors 10/135 and 25/250. What is the strike and dip of
the plane? Solve graphically and analytically.

11. On the provided topographic map, the top of a prominent limestone bed is exposed at the
surface at points D and E and it is encountered at point F in a borehole at an elevation of
4000 ft. What is the strike and dip of the plane? Solve graphically and analytically.


