
Chapter 6

ROTATIONS

6.1 INTRODUCTION

In a number of geologic situations structural lines and planes have been rotated from some initial orientation
and these can be analyzed on the stereonet. Every rigid rotation can be defined by an angle and sense of
rotation about a specified axis.

The most general case involves rotation about an inclined axis but we start with the simpler cases of
rotations about vertical and horizontal axes. We do this because it is a good way to introduce the techniques
of rotations and because a sequence of such rotations is equivalent to a rotation about a single inclined axis.
In all cases, the sense of rotation is described as clockwise or anticlockwise when looking along the specified
axis, whether horizontal, inclined or vertical.

6.2 BASIC TECHNIQUES

As an aid to visualization consider a turntable (Fig. 6.1). As the base rotates about its axis R through some
angle ω the locus of an oblique line L through its center O is a right-circular cone of rotation. Angle φ
between R and L is the semi-vertex angle of this cone. The intersection of this cone with the sphere will, in
general, be a small circle, one in the lower and one in the upper hemisphere. There are, however, two special
cases: if φ = 0◦ the surface degenerates to a line and if φ = 90◦ it becomes a plane.
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Figure 6.1: Cone of rotation: vertical axis; (b) horizontal axis.

Rotation about a vertical axis is the easiest to perform on the stereonet. To visualize imagine the turntable
with its vertical axis downward as in Fig. 6.1a. The cone of rotation intersects the lower hemisphere as a
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2 CHAPTER 6. ROTATIONS

small circle at the center of the net and the sense of rotation can be immediately and directly seen as either
clockwise or anticlockwise.

Problem

• What is the orientation of the horizontal line L1(00/150) after a anticlockwise rotation ω = 70◦ about
a vertical axis?

Construction

1. Mark R at the center of the net and plot point L1 on the primitive representing the line (Fig. 6.2a).

2. From L1 count off ω = 70◦ anticlockwise along the primitive to locate the point L′
1 representing the

rotated line.

Answer

• After rotation the orientation of the line is L′
1(00/080).

Because φ = 90◦, in this special case the trace of the cone of rotation is a great circle. Note too that
the trend changed but the line remained horizontal. The construction is only slightly more involved if an
inclined line is rotated about vertical axis.

Problem

• What is the orientation of inclined line L2(30/150) after a anticlockwise rotation ω = 70◦ about a
vertical axis?

Construction

1. Mark R at the center of the net and plot point L2 representing the inclined line (Fig. 6.2b).

2. From the trend of L2 count off ω = 70◦ anticlockwise along the primitive to locate the trend of the
rotated line. With the original plunge angle plot L′

2 representing the rotated line.

Answer

• After rotation the orientation of the line is L′
2(30/080).

Again, note that the trend changed but the plunge remained the same. Both L2 and L′
2 lie on a small

circle which represents the intersection of the vertical cone of revolution and the lower hemisphere. As a
visual aid, this circle may be added to the stereogram; with a compass draw a circle about the center of the
net with angular radius φ = (90◦ − p); in this example φ = 60◦.

Rotation about a horizontal axis can also be performed readily on the stereonet (Fig. 6.1b). Unlike the
case of the vertical axis, there are many possible horizontal axes. Rotations about such axes are always
performed with R on the overlay coincident with the north or south point to take advantage of the small
circles printed on the net. We illustrate with two examples.
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Figure 6.2: Rotations about a vertical axis.

Problem

• What is the attitude of the horizontal line L1(00/030) after a 110◦ clockwise rotation about a horizontal
axis which trends due north?

Visualization

• Looking north, a clockwise rotation about R moves L from right to left along its small circle.

Construction

1. Mark R(00/000) representing the rotation axis and plot point L1(00/030) representing the horizontal
line (Fig. 6.3a).

2. Along the small circle on which L1 lies count off ω = 110◦ from right to left to locate point L′
1.

Answer

• The attitude of the line after rotation is L′
1(28/349).

Note that both the trend and plunge of the line changed as the result of this rotation. The second
example involves the more general case of a rotation of an initially inclined line.

Problem

• What is the attitude of line L2(40/120) after the same rotation ω = 110◦?

Construction

1. Again mark R(00/000) and plot point L2(40/120).

2. Along the small circle on which L2 lies count off 110◦ from right to left to locate point L′
2 (Fig. 6.3a).
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Figure 6.3: Rotations about a horizontal axis: (a) clockwise; (b) anticlockwise.

Answer

• The attitude of the rotated line is L′
2(24/245).

In both these examples the lines remained in the lower hemisphere. Every such structural line has another
end, called its opposite, which intersects the upper hemisphere and therefore normally remains out of sight.
With other senses and angles of rotation, however, the initially downward end may move into the upper
hemisphere. When this happens its opposite immediately move into the lower hemisphere. Two closely
related examples will illustrate the treatment (Fig. 6.3b).

1. If the horizontal line L1(00/030) is rotated ω = 110◦ anticlockwise instead, it immediately moves into
the upper hemisphere. At the same instant its opposite moves into the lower hemisphere diametrically
opposite and thereafter along the same small circle. The final attitude is L′

1(28/169).

2. If the plunging line L2(40/120) is similarly rotated ω = 110◦ anticlockwise it moves first along its small
circle 44◦ to the primitive and then its opposite continues the rotation along the same small circle an
additional 66◦. The total rotation is thus made up of two parts. The final attitude is L′

2(57/315).

In addition to lines, we can also rotate planes and there are two ways of doing this. First, several points
along the great circle trace of the plane may be rotated individually to establish the great circle representation
of the rotated plane.

Problem

• Rotate the plane N 18 W, 50 W clockwise ω = 40◦ about a horizontal axis which trends N 30 E.

Method I

1. Trace in the great circle representing the given plane (Fig. 6.4a).

2. Mark R(00/030) and revolve the overlay so that this point coincides with north on the net.

3. In this position, arbitrarily locate three points L1, L2 and L3 on the arc of the great circle. These
should be widely spaced and it simplifies things if each is located at the intersection of a small circle.
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4. Without moving the overlay count off ω = 40◦ from each of these points along the small circles in the
direction given by the sense of rotation, that is, from right to left. Doing this for L1 and L2 locates the
rotated points L′

1 and L′
2 directly. Point L3, however, is carried to the primitive and beyond, which

means that it moves into the upper hemisphere and its opposite L′
3 into the lower hemisphere.

5. Revolve the overlay so that L′
1, L′

2 and L′
3 lie on a great circle which can then be traced in.

Answer

• The strike and dip of the plane after rotation is N 62 W, 35 S. Note that two points would have sufficed
to fix the great circle but the third serves as an important check.

With the second method, the plane is represented by its pole and this is rotated in a single step.

Method II

1. Mark R(00/030) and plot the pole of the plane P (40/072) (Fig. 6.4b).

2. Revolve R to north and count off ω = 40◦ from P along its small circle to locate the rotated pole P ′.

3. Trace in the corresponding great circle representing the plane and read its attitude.

Answer

• The attitude of the pole of the rotated plane is P ′(55/028) and this is the same attitude as before.
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Figure 6.4: Rotation of a plane: (a) points on plane; (b) poles.

Clearly, it is far easier to treat the single point representing the pole of the plane rather than several
points on the great circle, although this requires that the dip and strike of the plane be converted to plunge
and trend of the pole. Bengtson (1983) described an alternative plot which avoids even this step.

As emphasized by Phillips (1971, p. 5) these rotational techniques involve two closely related but geomet-
rically different and distinct manipulations. The procedure of turning the overlay about its center to align a
horizontal axis with north or south on the net is one of convenience, but the overlay always carries with it
the N mark so that the original orientations never really changed. The term revolve is used specifically to
describe this manoeuvre. On the other hand, as the result of a rotation lines and planes have entirely new
orientations relative to a fixed geographical direction.
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6.3 SEQUENTIAL ROTATIONS

A line of any initial orientation can be rotated into any final orientation by a sequence of these simple
rotations. To illustrate we rotate an initially horizontal plane, represented by its vertical pole, containing a
line in two steps: first about horizontal axis RH , then about vertical axis RV .

Problem

• A horizontal plane contains line L(00/320). What is the attitude of the plane and line after a two-step
rotation:

1. Rotate first about axis RH which trends due south by a clockwise angle ωH = 60◦,

2. Then rotate about axis RV by an anticlockwise angle ωV = 40◦.

Visualization

• Looking due south in the direction of RH we see that a clockwise rotation moves pole P and line L
to the east (Fig. 6.5a). Alternatively, looking due north in the direction of the opposite of RH , we see
that this is equivalent to an anticlockwise rotation. This illustrates a general rule: a clockwise rotation
about an axis produces the same results as an anticlockwise rotation about its opposite, and vice verse.

Construction

1. On the primitive, mark points RH(00/180) and L(00/320), and at the center the coincident points
P (90/000) and RV (90/000) (Fig. 6.5a).

2. There are two ways of performing the first rotation.

(a) Turn RH to north. As the horizontal plane tilts clockwise about this axis, its pole P moves 60◦

to the left from the center along the east-west diameter of the net to P ′, and line L moves 60◦ in
the same sense along its small circle to L′.

(b) Leave RH at the south point; its opposite is now at north. An anticlockwise tilt moves the pole
and the line 60◦ to the right from the center along the east-west diameter of the net to P ′ and L
by the same amount and sense to L′.

3. The second rotation about RV changes the trends of both the once rotated pole P ′ and line L′ by a
anticlockwise angle of 40◦, but their inclinations remain the same.

Answer

• After two rotations, the attitude of the pole is P ′′(30/050) and the attitude of the line is L′′(34/297).
The corresponding dip and strike of the plane is N 40 W, 60 W and the line trends toward N 63 W.

If the order is reversed, that is, the rotation about RV by ωV = 40◦ is performed before the rotation
about RH by ωH = 60◦, the result is different (Fig. 6.5b). Because a rotation about a vertical axis does not
change the orientation of a vertical line, the pole has been, in effect, only rotated once. Its final attitude is
P ′′(30/090). The line has been rotated twice and its orientation is L′′(59/289). This demonstrates that in
finite rotations the order of the steps is important, that is, they are not generally commutative.
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Figure 6.5: Two rotations: (a) about RH then RV ; (b) about RV then RH .

6.4 ROTATIONS ABOUT INCLINED AXES

The general case involves a rotation about an inclined axis. As before, the locus of a line rotated about such
an axis is a small circle on the stereonet. We start with the basic geometry of the case in order to establish
a visual picture of the process.

Problem

• Rotate the horizontal line L(00/050) about the inclined axis R(30/090) anticlockwise ω = 90◦.

Construction

1. Plot inclined axis R and horizontal line L. The angle between these two points measured along the
common great circle is φ = 48◦ (Fig. 6.6).

2. About R draw the small circle representing the cone of rotation with angular radius φ (see §6.9).

3. As L rotates 90◦ about R it moves along this small circle to L′(63/033).

Besides requiring the extra effort of constructing this small circle, there is, unfortunately, no direct way
of measuring the angle of rotation on it. This is not, therefore, a practical approach to performing rotations
graphically. The diagram is, however, an important aid to visualizing the effects of a rotation about such an
inclined axis. In practice, there are two alternative constructions.

The first depends on previous methods and consists of rotating the inclined axis R about a horizontal
axis so that it is either horizontal or vertical. The advantage of adopting a vertical axis is that rotations
into the upper hemisphere are commonly avoided. Then the require rotation is performed as in the previous
examples. Finally, R is returned to its original inclination by reversing the first rotation.

Problem

• Rotate the horizontal line L(00/050) anticlockwise ω = 90◦ about the inclined axis R(30/090).
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Figure 6.7: Inclined axis: (a) sequential rotations; (b) direct rotation.

Construction I

1. Plot points R and L (Fig. 6.7a).

2. To bring R to the center of the net we need to rotate about an auxiliary horizontal axis whose trend
is perpendicular to the trend of R, that is, due north. Mark this point R1.

3. As R moves ω = (90◦ − 30◦) = 60◦ to the center of the net, L moves by the same amount and sense
along its small circles to L′.

4. Performing the ω = 90◦ anticlockwise rotation about the now vertical axis R2, point L′ moves to L′′

along a small circle concentric with the center of the net.

5. Reverse the rotation about R1 of Step 3 to return R to its original orientation and with it L′′ to L′′′.

Answer

• The attitude of the line after this sequence of rotations is L′′′(63/033).
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In serial constructions such as this, the potential errors increase with the number of steps, so this is not the
preferred method. However, it is important because it forms the basis of methods which are treated in the
next chapter.

The second method involves the direct rotation about the inclined axis using an auxiliary construction
(Turner & Weiss, 1963, p. 69). An important advantage is that by reducing the number of steps the plotting
errors are also reduced. Imagine the turntable with its axis pointing in the direction of inclined axis R. The
plane of the turntable is now inclined and its great circle representation is easily drawn with R as its pole.

Construction II

1. As before plot R and L. Then trace in the great circle normal to R (Fig. 6.7b).

2. Revolve the overlay so that R and L lie on the same great circle on the net. Trace in this arc to
intersect the first great circle whose pole is R at I .

3. The angle between L and R along this arc is φ = 48◦.

4. As I rotates anticlockwise about R it moves first to the primitive and then its opposite to I ′. Therefore
count off ω = 90◦ from right to left in two increments. Alternatively, count 180◦ − 90◦ = 90◦ back
from I to locate I ′.

5. Revolve overlay so that I ′ and R lie on the same great circle and count off φ = 48◦ from R to locate
L′.

Answer

• The attitude of the line after this single rotation is L′(68/033), which is the same as before.

That the rotation of Fig. 6.7b about a single inclined axis produces the same results as the sequence of
rotations of Fig. 6.7a illustrates an important fact. By a theorem due to the famous Swiss mathematician
Leonard Euler (1707–1783) any sequence of rigid body rotations about a series of axes can always be described
by single rotation by a single angle about a single axis.

6.5 ROTATIONAL PROBLEMS

These several rotational techniques solve a class of forward problems. In each case, we started with a known
initial state, applied a specified rotation, tracked the lines and poles along small circle paths to arrive at the
final state. In effect, these model the rotations as they occur in nature.

In contrast, the geologist is faced with quite a different problem. In the field, we observe the orientation
of planes and lines which have been rotated in the geologic past. From measurements of such features we
wish to determine the rotations which are responsible for these changes in orientation and thus to recover
the initial state. These are examples of a class of inverse problems. Generally, these are commonly much
more difficult to solve.

In particular, the fact that the rigid rotation of a body, no matter how complex, can always be described
by a single Euler axis and Euler angle leaves us, in general, with only a description of the angular relation
between the initial and final states. There are many motions could have produced a particular difference in
orientation from a simple rotation about a single axis to the progressive rotation about a constantly shifting
axis. There is no way to distinguish between these on the basis of the measurement of the orientation of line
and planes alone. We take up some of these questions again in §7.5–7.6.
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6.6 TILTING PROBLEMS

A typical problem involves the restoration of tilted beds and sedimentary lineations which they contain to
their pre-tilt orientation. For example, a solution of this problem would aid in the paleogeographic recon-
struction of current directions in some past geologic time. We can easily restore the plane to horizontality
because it involves the rotation about a horizontal axis, but what about a possible rotation about a vertical
axis? We could determine this rotation if we knew the pre-tilt trend of a line, but this is the very question
that we are trying to answer.

Knowing only the final state, we usually do not have enough information to recover multiple rotations
and the problem is therefore not solvable. What to do? As the construction using sequential rotations
indicates, the horizontal component of rotation is parallel to the strike of the tilted beds. As a partial
solution we therefore choose R in this direction and then proceed with the restoration on this basis. This is
the conventional tilt correction (MacDonald, 1980).

Problem

• A dipping bed N 40 W, 60 W contains a sedimentary lineation which trends N 63 W. Restore the bed
to horizontality and estimate the original trend of the lineation. Note that the attitude of this inclined
plane and line are identical with the forward results obtained in Fig. 6.5a by a sequence of rotations.

Visualization

• Hold the right hand with palm upward and inclined to the west with fingers pointing toward the
northwest over the net; also hold a pencil on the palm in the direction of the line. Now rotate the hand
through an angle of 60◦ into a horizontal position and observe the final position of the line.

(a) (b)
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Figure 6.8: Restoration of a plane: (a) upright; (b) overturned.

Construction

1. Trace in the great circle representing the inclined plane and on it locate line L(34/297) (Fig. 6.8a).

2. Plot point P (30/050) representing the pole of the plane.

3. Label the strike direction R(00/340) and turn it to north.

4. As pole P moves 60◦ to the center of the net (and the bed to horizontality) line L moves along its
small circle to L′ on the primitive.
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Answer

• The restored orientation of the line is L′(00/280).

As we have seen, the rotation of planes generally requires the use of poles. However, in cases such as this
where the strike direction is taken as a rotation axis, the line of true dip remains fixed as the line of steepest
inclination as if it were a physical line. In this case it is then simpler to rotate this line D(60/230) directly
to the primitive, rather than plot and use the pole.1 We will use this method in the next example.

Clearly, if the tilt correction is not made and the measured trend of the line on the inclined plane is used
an error will result. In this example, the difference between the measured trend t and the restored trend
t′ is ∆t = t − t′ = 17◦. However, if the angle of dip is small and the line is close to the dip direction this
trend error ∆t may be negligible (Ten Haaf, 1959, p. 72; Ramsay, 1961). If this approximation is seriously
considered it should always be tested with a plot on the stereonet.

Note carefully that this restoration using the conventional tilt correction is not the same as the starting
state illustrated in Fig. 6.5. We have not recovered the trend of the line because we have not taken into
account the component of rotation about a vertical axis.

Without additional information any such rotation about a vertical axis remains unknown. One way
of obtaining such information is to compare the results of the restoration with undisturbed beds nearby.
Ten Haaf (1959, p. 78; see also Potter & Pettijohn, 1977, p. 371) used this technique to demonstrate that
kilometer-scale coherent slabs in the Appenines of northern Italy rotated about vertical axes through large
angles during gravitational sliding. Another approach is to use paleomagnetic vectors to assist in identifying
the axis of rotation which restores the tilted beds to their actual initial orientation (Tauxe & Watson, 1994;
Weinberger, et al., 1995).

There are certainly situations where beds have been tilted about axes which were horizontal or nearly so
and this conventional approach will then produce acceptable results. In the face of the general un certainties,
however, it is prudent to remain cautious. All the remaining problems in this chapter involve these same
uncertainties.

There is an additional special case. If the plane returned to horizontality was overturned, then the
resulting orientation of the associated linear structure obtained using this method will be incorrect. An
alternative construction must be used.

Problem

• An overturned sedimentary bed N 40 W, 60 W contains a sedimentary lineation trending N 63 W.
Restore the bed to horizontality and determine the original trend of the lineation using the conventional
tilt correction.

Visualization

• Hold the left hand, palm downward with a pencil in the proper orientation over the net. Now rotate
the hand through an angle of 120◦ into a horizontal position with the palm upward and observe the
position of the line.

Construction

1. Trace in the great circle representing the inclined plane and on it locate the line of true dip D(60/230)
and the line L(34/297) (Fig. 6.8b).

1That this is not true for rotations about other axes see Fig. 6.4 where point L2 is located on the line of true dip on its
plane but the rotated point L′

2 is not on the line of true dip of the rotated plane.



12 CHAPTER 6. ROTATIONS

2. Label the strike direction R(00/340) and turn this mark to north.

3. As D moves 120◦, first to center of the net and then to the primitive (and the bed to horizontal), L
moves along its small circle to L′ in the same sense and angle, also to the primitive.

Answer

• The attitude of the restored line is L′(00/000), that is, horizontal and due north. This is quite different
result from the restoration in upright case.

6.7 TWO TILTS

A closely related situation involves the restoration of a structural plane that has been tilted twice, called the
problem of two tilts. The goal is to determine the attitude the plane after the first but before the second tilt.

Upper beds

Lower
be

ds
PU

PL

P'U

P'L

R
N

R
estored lower beds

Figure 6.9: Problem of two tilts.

Problem

• The attitude of beds above an angular unconformity is N 20 E, 30 E and the attitude of the beds below
the unconformity is N 70 E, 50 S. What was the attitude of the lower beds before the tilt of the upper
beds?

Method

• Because this correction of the tilt of the lower beds involves rotation about an axis which is oblique
to the strike direction we can not used the line of true dip. The representation of the planes by their
poles is required. Plotting the tilted planes by great circles is not necessary for a solution but they are
helpful in the visualizing the procedure and result.

Construction

1. Plot the poles of the once tilted upper beds PU (60/290) and the twice tilted lower beds PL(40/340)
(Fig. 6.9).
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2. Mark the strike direction of the upper beds as the rotation axis R(00/020) and turn it to north.

3. In restoring the upper beds to horizontality, pole PU moves 30◦ inward to the center of the net and
pole PL moves 30◦ in the same direction along its small circle to P ′

L.

Answer

• The restored pole P ′
L(53/010) of the lower beds corresponds an attitude of N 80 W, 37 S.

6.8 FOLDING PROBLEMS

These same techniques can also be used to restore the attitude of folded beds. We treat the details of the
geometry of folds in Chapter 13. Here it is sufficient to treat folds as to two planes whose line of intersection
represents the fold axis. In such applications there is an important caveat. If the folding is accompanied by
distortion of the bedding planes the angular relationships change and this requires a more involved treatment
(see §12.9; also Ramsay, 1961). The following treatment assumes that such distortions are absent.

If the folds are horizontal the conventional tilt correction suffices to return the beds to horizontality. If
the folds plunge, the tilted beds can be considered to have two rotational axes: one of them is the fold axis
and the other is a horizontal axis perpendicular to the trend of the fold axis (Ramsay, 1961). Reversing
the rotations on both these then unrolls the folded beds to their original orientation. Using the previous
approach, a sequence of rotations is used. First, the beds are unrolled about the plunging fold axis and then
about the resulting strike direction to bring the beds back to horizontal.

(a) (b)
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Figure 6.10: Restoring folded beds: (a) upright limb; (b) overturned limb.

Problem

• The fold axis plunges 31◦ due north. On the west limb of an anticline, inclined beds whose attitude
is N 20 E, 60 W contain sole markings which trend due west. Determine the prefolding orientation of
this sedimentary lineation.

Visualization

• With the left hand represent the plane on the west limb with the index finger in the direction of the
fold axis. Similarly, with the right hand represent a similarly oriented plane on the east limb. Now
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rotate both planes about your index fingers to bring the two planes into parallelism. Now perform the
tilt correction to bring this plane into horizontality.

Construction

1. Plot the fold axis F (30/000) and draw in the great circle representing the inclined plane and locate
the east-trend line L on its trace. Note that this great circle must pass through F (Fig. 6.10a).

2. Read off the angle φ between L and F .

3. Unrolling the beds about the plunging fold axis results in a plane dipping 30◦ due north. The angle
between F and L φ = 55◦ remains constant. Thus after unfolding L′ can be located at the same angle
along the great circle representing this north-dipping plane.

4. The tilt correction then brings the plane to horizontal and the line to L′′ on the primitive.

Answer

• The restored orientation of the sedimentary lineation is L′′(00/056).

If the beds are overturned this simple restoration will be in error and an adjustment must be made. With
the same visualization as before, now rotate your hand about the fold axis so that the palm is downward.
The angle φ remains the same, but now L′ is on the opposite side of F . The tilt correction then gives L′′′

with a trend of N 56 E (Fig. 6.10b).

6.9 SMALL CIRCLES

Throughout this chapter we have made use of small circles on the stereonet. It is a fundamental property
of the stereographic projection that circles on the sphere project as circles (see §5.1). Here, we show how to
construct a small circle about any inclined axis. We also prove that they are indeed circles.

As we have seen, a small circle is the intersection of the sphere and a right-circular cone. A vertical di-
ametral plane of the sphere containing the inclined axis OP displays a section MON of this cone (Fig. 6.11a).
The cone axis makes an angle θ with the vertical and its vertex angle is 2φ. Line MN is the trace of the
circular section of this cone.
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Figure 6.11: Small circle: (a) on sphere; (b) in projection.
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We project the small circle on the sphere to the horizontal projection plane using the zenith point Z.
The center of the circle P projects to R, the lowest point M and highest point N on the circle project to
points A and B (Fig. 6.11b). With these two points any small circle may be drawn on the stereonet. There
are two important cases. The circle may be wholly within the lower hemisphere or it may be partially in the
upper hemisphere. We start with the simpler case when the cone is entirely within the lower hemisphere.

Problem

• Construct the small circle whose angular radius φ = 35◦ about inclined axis R(45/140).

Construction

1. Plot the axis R(45/160). On a radius of the net through R plot points A and B at φ = 35◦ measured
from R.

2. Bisect the linear distance AB to locate the center C and complete the circle with radius AC = BC
using a compass. Note that C does not coincide with R (Fig. 6.12).

A

B
C

N

Figure 6.12: Construction of a small circle.

If the small circle overlaps the primitive, that is, if it extends partially into the upper hemisphere it is
then necessary to construct the arc of its opposite. This requires additional steps because there is no direct
way of plotting points outside the primitive.

On the vertical diametral section of the sphere, the trace of the cone is MON and its opposite is M ′ON ′

(Fig. 6.13). Points M and N are projected using Z to points A and B on the projection plane in the usual
way, A inside and B outside the primitive. In the same way the opposite points M ′ and N ′ are projected to
A′ outside and B′ inside the primitive. Note that ∠NZN ′ = ∠MZM ′ = 90◦.

Just as before, segments AB and A′B′ are bisected to locate centers C and C ′ and the two circles
are completed with a compass. Although it is in two parts, the small circle is now complete in the lower
hemisphere (and also in the upper hemisphere).

Expressions for the location of the center of the small circle and its radius can also be obtained. For a
sphere of unit radius, and in the notation of Fig. 6.11b,

OA = tan 1
2 (θ − φ) and OB = tan 1

2 (θ + φ),

where θ is the supplement of the plunge of the cone axis and φ is the semi-vertex angle of the cone. With
these the distance from O to the geometrical center of the small circle on the projection plane is then

c = 1
2 (OB + OA) = 1

2

[
tan 1

2 (θ + φ) + tan 1
2 (θ − φ)

]
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Figure 6.13: Small circle and its opposite.

and its radius is
r = 1

2 (OB − OA) = 1
2

[
tan 1

2 (θ + φ) − tan 1
2 (θ − φ)

]
.

Substituting the identities

tan 1
2 (θ + φ) =

sin θ + sin φ

cos θ + cosφ
and tan 1

2 (θ − φ) =
sin θ − sin φ

cos θ + cosφ

and rearranging, these two expressions become

c =
sin θ

cos θ + cosφ
and r =

sin φ

cos θ + cosφ
.

These equations can also be used to locate earthquake epicenters (Garland, 1979, p. 54). Because θ = (90◦−p)
a more convenient form for our purposes is

c =
cos p

sin p + cosφ
and r =

sinφ

sin p + cosφ
. (6.1)

With these the location and size of a circle which is mostly in the lower hemisphere can be easily determined
for a stereogram of any size. Just multiply the values of both c and r by the desired radius of the primitive.

These two parameters can also be used to calculate the location and size of the opposite small circle by
using −p (indicating an upward inclination of the cone axis) in Eqs. 6.1, or by using

c =
cos p

− sin p + cosφ
and r =

sin φ

− sin p + cosφ
. (6.2)

Both the graphical and analytical methods illustrate two aspects of opposite small circle which have some
practical importance.

1. As the opposite point M ′ approaches the projection point Z both c and r become very large and
drawing the opposite arc is difficult or impossible.

2. Opposite small circles have two basic configurations:

(a) If (p + φ) < 90◦ its arc is convex toward the center of the net (Fig. 6.14a)

(b) If (p + φ) > 90◦ its arc is concave toward the center (Fig. 6.14c).
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(a) (c)(b)

Figure 6.14: Types of small circles.

The boundary case occurs when the low point on the cone coincides with the center of the net, that is,
when (p + φ) = 90◦ (Fig. 6.14b). In the graphical construction of its opposite A′, the projector from Z is
parallel to the projection plane and both c and r are infinite. In Eqs. 6.2 this state is indicated when the
denominator (− sin p + cosφ) = 0. The representation of the opposite of such a circle is particularly easy to
construct — it is a straight line.

We now demonstrate that circles on the sphere do, in fact, project as circles following Phillips (1963,
p. 24–25). As we have seen, any small circle is the intersection of a sphere and a right-circular cone with
vertex at the center of the sphere (Fig. 6.11a). The axis of this cone OP makes angle θ with the vertical
and ∠MON = 2φ. The small circle on the sphere has a diameter of MN and the point P is at its center.

The projection of points P , M and N on the sphere to the projection plane uses the zenith point Z. The
resulting three points A, B and R define a second cone whose axis ZP makes an angle 1

2θ with the vertical
and ∠MZN = φ (Fig. 6.11b).

Z

K

O

N

T

M

P
S

J

Figure 6.15: A small circle and its projection.

Proof

1. On the vertical plane containing the cone axis, chord KN is drawn parallel to the projection plane,
hence also perpendicular to OZ. Right triangles ZKJ and ZNJ are congruent and so ∠ZKJ = ∠ZNJ
(Fig. 6.15, where black dots mark equal angles).

2. Because they subtend these equal angles, the lengths of arcs ZK and ZN are equal. Then the inscribed
angles which subtend these equal arcs are also equal, so ∠ZMN = ∠ZNJ .
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3. Line MN , which is oblique to axis ZP , is the trace of a circular section of cone MZN . Therefore the
right section of this cone MT is an ellipse.

4. By construction TS make the same angle with axis ZP as the circular section MN . Therefore TS is
a conjugate circular section.

5. Therefore ∠ZTS = ∠ZMN , and also ∠ZNJ = ∠ZTS. Lines TS and NJ are then parallel and also
parallel to the projection plane.

6. Parallel sections of a cone are similar. Therefore the section in the projection plane is also a circle and
the proof is complete.

6.10 EXERCISES

1. A horizontal plane contains a line whose trend is N 48 E.

(a) Rotate the plane and line about a vertical axis 50◦ anticlockwise.

(b) From the same starting position, rotate the plane and line about a north-trending horizontal axis
60◦ clockwise.

2. Sequence of rotations.

(a) Rotate the same horizontal plane and line first about a vertical axis 50◦ anticlockwise and then
about a north-trending horizontal axis 60◦ clockwise.

(b) Rotate the horizontal plane and line first about a north-trending horizontal axis 60◦ clockwise
and then about a vertical axis 50◦ anticlockwise.

3. Rotate the same plane and line about an axis whose plunge and trend is 30/200 40◦ clockwise.

4. The beds below an angular unconformity have an attitude of N 30 W, 40 W. The strata above the
unconformity have an attitude of N 20 E, 30 E. What was the attitude of the lower beds before the
tilting of the younger bed occurred?

5. An anticlinal fold axis plunges 24/040. On the east limb where the beds have an attitude of N 5 W,
32 E, the crest line of current ripple marks pitches 70 N in the plane of the bedding. What was the
pretilt orientation of these marks? Compare your result with the assumption that the tilted orientation
of the lineation adequately represents the original direction.

6. An anticline plunges 50/025. The eastern limb is overturned, and at one point the attitude is N 45 E,
50 W. At this same locality a sedimentary lineation plunges due west. What was the orientation of
the lineation before folding?

7. Rotate the plane whose attitude is N 10 E, 30 E, fifty degrees anticlockwise as viewed down the plunge
of an axis whose attitude is 30/340 in two ways: (1) as a series of steps involving rotation of the axis
to the primitive, rotating the line about the now horizontal axis, and then returning the axis to its
original orientation; (2) as a single rotation about the inclined axis.

8. MORE


