Chapter 7

VECTORS

7.1 INTRODUCTION

Vectors play a prominent role in many geometrical and physical applications. We have seen several
simple examples in Chapters 1 and 3 where the attitudes of planes and lines were represented and
manipulated using two-dimensional vectors. We now extend the treatment to three-dimensions,
and to several additional applications.

As we have seen, the stereonet is a useful way of displaying and manipulating structural lines
and planes easily and directly in a three-dimensional setting. For the same reasons, we can use
the stereonet to introduce an analytical approach involving vectors which is a powerful method for
solving these same types of problems (see also Sprenke, 1992).

Because the orientation of planes are defined by their poles, we can represent all structural
elements by lines. There are two types of such lines.

1. Axeshave orientation but no sense. Lineations in metamorphic rocks, lines of intersection
and poles of fracture planes are examples.

2. Vectorshave both orientation and sense. Examples include some linear sedimentary struc-
tures and paleomagnetic directions.

Some structural lines may be treated in either way. For purely geometric purposes the pole
of sedimentary bedding is commonly treated as an axis, but for other purposes the pole in the
direction of younging has sense and therefore is a true vector.

In many applications it is convenient to represent axes by vectors. In fact, we have already
done this in Chapters 1 and 3 by choosing to represent lines of true and apparent dip as horizontal
vectors which point in the direction of downward inclination. As before, the sense of these vectors
is arbitrarily but conveniently chosen to poidbwnward thus we can always plot them on the
lower hemisphere. If we encounter an upward pointing axis-as-vector we can immediately convert
it to a downward pointing one.

These vectors can then be manipulated by taking advantage of the well-established vector for-
malism encountered in introductory courses in calculus and physics. Not only is this a particularly
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Figure 7.1: Lower hemisphere and the coordinate axes.

powerful way of solving a number of structural problems but it also lays the groundwork for more
advanced applications (Goodman, 1976, p. 217f; Priest, 1985; Wallbrechet, 1986

We need a coordinate system. For problems involving conditions within the earth, it is nearly
universal to measure depth along a downward pointiraxis. Accordingly, we define a right-
handed set of axes withz = north, +y = east andrz = down (Fig. 7.1¢ The equation of the
unit sphere is then

4?27 =1, (7.1)

and the directions of vectors can be represented by points on the surface of this sphere.

In many applications it is necessary to use vector components. Following common practice
we take unit base vectois j andk to be parallel to the coordinate directions:, +y and+z,
respectively. Then any vectdf is the sum of its components in each of these directioige
write this sum as

V =V,i+V,j+ V.k. (7.2)

Following common practice, we represent such a vector by its three scalar comp@nenisV. ).
The length or magnitude of vectdr is, from a three-dimensional version of the Pythagorean

theorem,
V=V = \/Wjﬂf2 (7.3)

When used to represent the orientation of lines and poles we are interested in the directions not
magnitudes of the associated vectors. It is then convenient to use only vectors of unit magnitudes.
To find the unit vector with the same direction as a general vectonamnalizeits components
by dividing each by the magnitude. The three scalar components of this unit vector are called
direction cosinesnd they are commonly given the symbgls: andn, where

1=V,)V, m=V,)V, n=V.JV. (7.4)

IWwallbrecher’s book contains the listing of a number of useful programs for structural geology. These are now
available as the package Fabric#at. geolsoft.com.

2In contrast, for problems involving surface or near surface features a geographical coordinate system with
east+y = north and+z = up is generally used (s&&.8).

3We use the symbdV to represent a generic vector. It should not be confused with the commonly used symbol
for volume
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With these, Eq. 7.3 reduces to the useful identity
P+m?+n?=1 (7.5)

With any two direction cosines this relationship yields the magnitude but not the sign of the third.

For use in plotting vectors as points on the steredlirettion anglesare more useful and these
are defined as

o = arccosl, [ =arccosm, 7 = arccosn. (7.6)

From the point plotted using its plunge and trend we can measure these three direction angles on a
stereogram.

Problem

e Find the direction angles of the vect®1(30/300).

Solution

1. Using its plunge and trend plot the point represen¥hon the usual way (Fig. 7.2a).

2. Measurex from +z, 3 from +y, andy from +z to V along great circular arcs.

Answer

e The direction angles are = 64°, 5 = 139° andy = 60°.

These angles can be checked by using Eg. 7.5, but note that this identity will rarely be exactly
satisfied because of inevitable errors in plotting the points and reading the angles. In the previous
example the sum i5.01176, and this is about as close to confirmation as one can get when reading
angles from the net to the nearest degree.

A closely related problem is to plot a vector on a stereogram given its direction angles.

Problem

¢ Plot the point representiny using its direction cosines = 0.43301, m = —0.75000,
n = 0.50000.

Solution

1. With Egs. 7.6, the three direction angles are 64.3°, 7 = 138.6°, v = 60.0°.

2. About the point on the primitive representing the axis trace in the small circle with
angular radiusy = 64.3° (Fig. 7.2b).
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(@) (b)

Figure 7.2: Direction angles: (a) reading angles; (b) plotting angles.

t B
! X
o } 3 y 0] cos B
P Vi B
1 |
/\* n | —t 4
| &
{ A (@)
A o m y
‘ @ £m (©)

Figure 7.3: Direction cosines from plunge and trend.

3. About the point representing they axis trace in the small circle with angular radids=
138.6°. Alternatively, this small circle can be locaté80° — 138.6° = 41.4° from —y. Even
simpler, just change the sign of and themrccos(+0.75000) = 41.4°.

4. The small circle fory = 60.0° about+z can be added to the diagram with a compass but it
is usually unnecessary. Itis, however, a good idea to check thatabgisveent > and the
intersection of the other two small circles is correct.

As with structural lines generally, we may also express the orientation of vectors by their plunge
p and trend. Note that in our adopted coordinate systgositive trend angleare measured clock-
wise from+az = north andpositive plunge angleare measured downward from the horizontal
xy plane, as is standard. On the stereonet these angles are closely related to spherical coordinates:
0=t ¢=90°—pandr =1.

From plunge and trend we can also compute the direction cosines (Fig. 7.3a). The horizontal
component of the inclined unit vectax with lengthOA = 1 is vectorB whereB = cosp. From
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Figs. 7.3b and 7.3c, the direction cosines\oére
l =cospcost, m =cospsint, n =sinp. (7.7)
These may also be converted back to plunge and trend with
p = arcsinn, t = arctanm/l. (7.8)

Thearctanfunction on hand-held calculators and in most programming languages returns angles
in the range—-90° < t < 90°, that is, only trend angles in the NE and NW quadrants are reported.

If [ < 0then the actual angle is in rang@° < t < 270° and it is necessary to add or subtrag°

to get the correct trend. In most programming languages and spreadsheet programs, the alternative
functionatan2(m, 1) gives the trend without need for this correction.

7.2 SUM OF VECTORS

There are many physical and geometric situations where two or more vectors must be combined
by addition, as we will see later. The equation expressing the addition of two vectors to give a third
is

A+B=C. (7.9

Given vectorsA and B we can determine their su@ either geometrically or analytically. The
geometrical method uses tharallelogram rule Place the tail oB at the head oAA. Then draw
the vector from the tail oAA to the head oB; this isC (Fig. 7.4a). Note thaB + A gives the same
result — vector addition is commutative. Note too tkats the diagonal of the parallelogram with
sides parallel toA andB, hence the name of the rule.

The difference of two vectors can also be found. The solution of Eq. 7.4 fcan be written
in two ways
A=C-B o A=C+(-B).

The vector—B has the same length Bsbut points in the opposite direction. The graphical solution
proceeds just as before (Fig. 7.4b).

(@) (b)

Figure 7.4: Parallelogram rule: (a) addition; (b) subtraction.

The analytical method involves representing vectors as matrices. This enumerates the compo-
nents and at the same time emphasizes that they represent a single entity. Even more important
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is that such matrices can be manipulated directly using matrix aldelra simple example we
represent them asolumn matricesThen we form the sum of two vectors by adding components
(Fig. 7.5). This is expressed by the matrix equation

. [A7 B [A4.+B] [C.
A+B_c_{Ay]+[BJ_{Ay+By]_M. (7.10)

The extension to three dimensions is straight forward.

Cy A, + B,

ol =14,+B,]. (7.11)
C, A, + B,
y
Cy C
By /B
Ay A
@) Bx Ax Cx

Figure 7.5: Vector addition using components.

A useful application involves finding the vector which bisects the angle between two given
vectors. IfA = B thenC divides the parallelogram whose sides a&r@andB into two congruent
triangles. Therefore the angles betweemndC and betweeB andC are equal (Fig. 7.6a).

Problem

e Bisect the angle between vectak$30/310) andB(60/030) (Fig. 7.6b).

Solution

1. From plunge and trend of each vector, the direction cosineA @é5667, —0.66341, 0.50000)
andB(0.43301, 0.25000, 0.86603).

4Good geologically-oriented introductions to matrix algebra are given by Ferguson (1994) and Davis (2002, p. 123—
158).
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Figure 7.6: Bisector of two vectors: (a) two dimensions; (b) three dimensions.

2. From Eq. 7.11 we then have

C, 0.98968
C,| = |—041341] . (7.12)
C, 1.36603

3. Normalizing these components@fwe obtain the direction cosin€3(0.56984, —0.23803, 0.78653).

Answer

e The plunge and trend of the bisectord§52/337). If vectorsA andB represent the poles
of planes, then vectdr bisects the angle between the two planes.

/7.3 PRODUCTSOF VECTORS

Important relationships between two vectors can be found by forming¢h&r or dot product
and thevectoror cross product

DOT PRODUCT

The first and simpler product of two vectoss andB is defined in terms of their magnitudes
andB and the angle between them as

A .-B = ABcos ¢, (7.13)

where0 < ¢ < 90°. This has a useful geometrical interpretatiddicos ¢ is the projection of
B onto A and A cos ¢ is the projection ofA onto B. The dot product can also be expressed in

component form as
A-B=A,B,+A,B,+ A.B.. (7.14)
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From these two versions it should be apparent that the order in which the vectors are taken
makes no difference, that ia, - B = B - A. The dot product, like the sum, is commutative.

As before, it is convenient to write such expressions as matrix equations AHsmepresented
by arow matrixandB by acolumn matrix Thus

B,
A-B=[A, A, A]|B,| =A.B,+A,B,+A.B.. (7.15)
B,

In this easily remembered form the three resulting scalar quantity is obtained by summing the
products of the corresponding elements of the row and the column matrices. This is an example of
row times column multiplicatio(Boas, 1983, p. 115-116), and we will use it repeatedly.

If both vectors have unit magnitudes then Eqgs. 7.13 and 7.14 combine to give the useful formula
for finding the angle between them

ﬁl . ﬁg = COS¢ = lllg + mimse + nineg, (716)

where ({1, m1,n1) and (l2, m2, ny) are the two sets of direction cosines. With this formula the
angle between any two directions represented by unit vectors may be easily fodnrd 9, that
is the two vectors are mutually perpendicular, this equation reduces to

lllg + mimeo + NN = 0 (717)

and this can be used as a test for orthogonality.

The dot product can also be used if the two unit vectors lie in one of the coordinate planes. For
example, in thecy plane, the direction angles measured fremare~y, = 7, = 90° and therefore
ny =ny = 0. Then Eq. 7.16 reduces to

cos ¢ = lyly + myimsy, (7.18)

and similar results can be obtained for vectors inggh@ndzz coordinate planes.

Problem

e What is the angle between the pole vectBi$30/310) andP,(60/030)?

Solution
1. From each plunge and trend, using Egs. 7.7, the direction cosines are

P,(0.55667, —0.66341,0.50000) and P2(0.43301,0.25000, 0.86603)
0.51503
2. With Eq. 7.16cos ¢ = 0-59820 or ¢ = 59°. This angle may be acute or obtuse; if acute, as
here, it is the dihedral angle between the two planes (Fig. 7.7a).
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(@)

Figure 7.7: Dot product: (a) angle between vectors; (b) pitch of a line.

In exactly the same way the angle between two lilhesandL, or between a lind. and a pole
P may also be found from the dot product.

This technique can also be used to calculate the pitch of a line in a specified plane. There are
several ways of doing this but the one which corresponds most closely with the previous graphical
method requires the direction of the strike of the plane — it is perpendicular to the trend of the pole
vector or equivalently, perpendicular to the trend of the dip vector. The orientation of this strike
vector can be obtained in either of two ways.

1. From the trend of either the pole or the dip vector, the strike direction is simiply 90° or
t —90°.

2. The direction of the strike may also be determined from the direction cosinesn) of
either the pole or dip vector. From Egs. 7.8, trend depends:ph The strike is then
obtained from the negative reciprocall/m). This horizontal strike vector has two forms
corresponding to its two equivalent ends

Si(—m,1,0) and Ss(m,—1,0). (7.19)

Problem
e The orientation of a plane is given by its pole vecRi30/310). Determine the pitch of the
apparent dip vectoA (48/080) (Fig. 7.7b).
Solution

1. The two possible strikes of the plane &g00/040) andS,(00/220). From Egs. 7.7, the
components of the unit strike vectors &g0.76604, 0.64279, 0.00000) andS.(—0.76604, —0.64279, 0.000

2. Fromits plunge and trend, the components of the apparent dip vectaf@re 619, 0.65897, 0.74314).
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3. Eq. 7.16 givesos ¢; = 0.51258 or ¢; = 59° measured fron$; andcos ¢, = —0.52158 or
0, = 121° measured fron®,. Note thatp, + ¢, = 180°. By convention the pitch angle is
acute.

CROSS PRODUCT

The second way of forming the product of two vectors is written
C=AxB. (7.20)

The product vecto€ is perpendicular to the plane &f andB and its direction is determined by the
right-hand rule:if the fingers of the right hand point fromA towardB through the smaller angle,
the thumb points in the direction @&. If the order is reversed, the direction Gfis also reversed,
hence the order does make a difference. This condition can be exptéss 8= —(B x A). In
other words, the cross product is not commutative.

The magnitude of the cross product vector is defined as
C = ABsin ¢, (7.21)

where, as beforej is the smaller angle between the two vectors.
In component form, the cross product may be expressed as the easily remembered determinant

i j k
AxB=|4, A, A,
B, B, B.

For computational purposes thisx 3 determinant can be reduced to the sum of thizee 2
determinants by thmethod of expansion by cofactpvehich follows a simple rule: for each scalar
coefficient cross out in turn the row and column containing the unit base vectpos k and in

each case form the determinant of the remaining four elements. For example, by crossing out the
first row and first column gives th x 2 determinant composed of the four remaining elements
timesi (Fig. 7.8a). The other cofactors are found in similar fashion. The full result is

A, A
B, B.

A, A,
B, B.

A, A,
B, B,

1 —

.

AxB= Jj+ k. (7.22)

Note that the way the signs alternate follows a simple pattern: if the sum of the row number and
the column number isventhe sign is positive and ddd the sign is negative.

Expanding these three separate 2 determinants also follows an easily remembered pattern:
form the product of the upper-left and lower-right elements and subtract the product of the upper-
right and lower-left elements (Fig. 7.8b). Applying this rule we then obtain

C=AxB=(A,B. - A.B,)i— (A,B. — A.B,)j + (A, B, — A, B,)k. (7.23)

Thus
c,=A4AB,—-AB, C,=ADB,—-AB, C,=AB,—A,B,. (7.24)



7.3. PRODUCTS OF VECTORS 11

ik o S
Al
@ & A A —»‘g B | (b) 8%, =AyB; - AzBy
B, B, B ~ .

Figure 7.8: Cofactors and determinants.

These expressions apply fully to any set of coordinate axes. As is often the case a special set of
axes brings out some important aspects simply and clearly. Thus it is convenient to choose axes
so that the plane of the two vectaAsandB coincides with thery coordinate plane. We can then

see that the cross product has an important geometrical interpretation: in Fig. 7.9a the magnitude
of vectorC represents the area of tharallelogramwith sides parallel tdA andB, that is

C = Ah = ABsin¢.
This is identical with the definition of Eq. 7.21. Thus the vedtbrepresents the orientation of the

plane of the parallelogram and its magnitudeepresents its area.

It is also of some interest to express this area in terms of the components of the Veetods
B. Dividing the parallelogram into two parts by a diagonal gives two congruent isosceles triangles
which have identical areas (Fig. 7.9b). The area of these identical triangles is found from the sum
of a right triangle (Fig. 7.9¢c) and a trapezoid (Fig. 7.9d) less the area of a second right triangle
(Fig. 7.9e). From these three figures

1. Area of the first sub-triangle is equal to half the base times the h&ig(rﬁ?mBy) (Fig. 7.9¢).

2. Area of the trapezoid is equal to the base times the mean height, — B,)(A, + B,)
(Fig. 7.9d).

3. Area of the second sub-triangle has an area§fA, A,) (Fig. 7.9e).

After summing these three expressions, multiplying by 2, expanding and collecting terms, the total
area of the parallelogram is then given by

B,B,+ (A, — B,)(Ay+ By) — A A, = A, B, — A,B,, (7.25)

and this is just the determinant f6k, given in Eqgs. 7.24.

Several important problems are easily solved using the cross product. The attitude of a plane,
as represented by its pole vecl®ycan be obtained directly from two apparent dip vectaisand
A,. This is written as

P = A1 X Ag. (726)
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Figure 7.9: Area of the parallelogram frof x B.
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Figure 7.10: Cross product: (a) pole of a plddg(b) line of intersectiord; (c) apparent difv.

Problem
e From apparent dip vectorA;(20/286) andA»(30/036) determine the attitude of the plane
(Fig. 7.10a).
Solution

1. From the plunge and trend of each apparent dip vector, the two sets of direction cosines are

A1(0.30593, —0.88850,0.34202) and A,(0.70063,0.50904, 0.50000).

2. Perform the multiplication and then normalized components of the resulting pole vector are
P(—0.61835, —0.08666, 0.77824).
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Answer

e The plunge and trend of the pole ®(50/170); the attitude of the dip vector is therefore
D(40/350).

In these types of problems it is convenient to choose the order, as we have here, so that the
product vector points downward. If the reverse order is taken it will be immediately signaled by
P, < 0orn < 0. This upward-pointing vector can be converted to the equivalent downward-
pointing one by changing the signs of all three direction cosines or by changing the sign of the
plunge and addin@80° to the trend.

The same procedure can be used to determine the orientation of the line of intersection of two
planes. The intersection vector is given by

1= P1 X Pg. (727)

Problem

e From two pole vector®,(70/146) andP.(50/262) determine the line of intersection of the
two planes (Fig. 7.10Db).

Solution

1. The components ai& (—0.26200, 0.21985, 0.93969) andPy(—0.08946, —0.63653, 0.76604).

2. The normalized components of the intersection vectof @66122, —0.14626, 0.23379).

Answer

e The attitude of the line of intersection1$14/009).

The cross product can also be use to find the apparent dip in a specified direction. The line of
apparent dip is the intersection of the inclined plane and the vertical plane whose trend is in the
apparent dip direction. From the poles of these two planes

A= P1 X Pg, (728)

where one of the poles is that of a vertical plane which contains the required direction.

Problem

e Find the apparent dig in the direction080 from the dip vectoD(60/130) (Fig. 7.10c).
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Solution

1. The pole of the inclined plane B, (30/310), and the pole of the vertical plane containing
A isP,(00/350). The two sets of direction cosines are then

P1(0.55667, —0.66341,0.50000) and P5(0.98481, —0.17365, 0.00000).

2. From the cross product, after normalization, we hAy8.11604, 0.65807, 0.74396).

Answer

e The plunge and trend iA (48/080) and the plunge angle is the required apparent dip.

74 CIRCULAR DISTRIBUTIONS

The statistical treatment of orientation data relies heavily on vector methods. We first treat the two-
dimensional case. Cheeney (1983, p. 22-26, 93f) and Middleton (2000, p. 161-167) give good
introductions to the subject and the book by Fisher (1993) contains a comprehensive treatment.
The use of a spreadsheet is a convenient way to manipulate such data (Tolson & Correa-Mora,
1996).

By way of introduction, we illustrate several problems associated with determining the mean
direction of measured strike lines. To do this we use a small invented data set (see Table 7.1).

1. The northeast trending lines of strikes (Column A of Table 7.1) are represented by points
on the circumference of a unit circle (Fig. 7.11a). A straight-forward calculation of the
arithmetic mean gives the correct valuelab, that is, N 25 E (shown by the filled circle).

2. Because strike lines are axes, the trend of either end is an equally valid statement of orienta-
tion. Column B of Table 7.1 gives the same data with one trend reversed (Fig. 7.11b). Now
the calculated mean 061 is not correct.

3. The five strike lines are rotat&d° anticlockwise $0° subtracted from each strike direction
(Column C of Table 7.1), and plotted as vectors (Fig. 7.11c). Again, the arithmetic mean of
—005, thatis N 5 W, is correct.

4. Trends are not commonly given by negative angles; azimuths are more appropriate (Col-
umn D of Table 7.1). The mean of these gives the wildly erroneous trepilof

The representing of horizontal vectors by points on the circumference of a circle of unit radius
may display a wide variety of forms, including uniform, unimodal, bimodal and multimodal pat-
terns. Here we confine our treatment to the simple but important case of a single cluster, that is
with a unimodaldistribution, and the determination of its mean direction.
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A B C D
005 005 —025 335
015 015 —015 354
025 205 —005 355
035 035 005 005

5 045 045 015 015
Mean 025 061 —005 211

A OWNPE

Table 7.1: The mean direction of measured strike lines.

123 19 12345

(@) 3 (b) ()

Figure 7.11: Lines of strike: (a) lines as vectors; (b) lines as axes; (c) lines rotated anticlockwise
30°.

As we have seen the arithmetic mean of trend angles expressed as azimuths generally gives
erroneous results. The reason is simple: consider two vectors with treAds and010. Clearly,
the true mean direction is due north, but their arithmetic meds(s or due south.

The correct way to combine a collection dfunit vectors is by vector addition, and we do this
by summing their components (Fig. 7.12).

C= icos 0; andS = isin 0;, (7.29)
i=1 =1
where thed; (i = 1,2..., N) are the orientation angles of the individual vectors. The magnitude
of theresultant vectoR is given by
R=VC?+52 (0<R<N). (7.30)
Alternatively, the mean resultant lengthis
R=R/N, (0<R<1). (7.31)

R = 1 implies that all points are coincident ati= 0 implies a uniform distribution, but only if
the data comprises a single group. The orientatioR ofvhich is themean directionis given by

= arctan S/C. (7.32)
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sin 6

-9 0o

Figure 7.12: Components of trend vectors.

7 0 sin 6, cos 0;
1 245 —0.90631 —0.42262
2 254 —0.96126 —0.27564
3 272 —0.99939 0.03490
4 277 —0.99255 0.12187
5 281 —0.98163 0.19081
6 294 —0.91355 0.40674
7 301 —-0.85717 0.51504
8 315 —0.70711 0.70711
9 329 —-0.51504 0.85717
10 334 —0.43837 0.89879
Sums —8.27236 3.03417

Table 7.2: Calculation of the mean of the trends of two-dimensional vectors.

As we have also seen, axial data presents another problem: because the ends of axes are in-
terchangeable there is an inherent ambiguity. The solution is to convert the axes to true vectors
by doubling the orientation angles (Krumbein, 1939; Pincus, 1956), which are now giveth by
(mod 360) (Fisher, 1993, p. 3P.

Problem

e From 10 measured azimuths of the long axes of beach pebbles, determine the mean trend
(Table 7.2).

5In modular arithmetic the expression (mod n) gives the remainder after integer divisiorafby the modulus
n; for example, 466 (mod 360) = 106. This is sometimes calledock arithmeticby analogy with arithmetic on a
clock face which has a modulus of= 12.
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Method

1. A plot using azimuths in the range-360° shows that the trend angles lie in two distinct
groups:7 in the NE quadrant anglin the SW quadrant (Fig. 7.13a).

2. By doubling the orientation angles and representing each resulting vector as a point on the
circumference of a unit circle they now form a single group with a raig&0° (Fig. 7.13Db).

3. From each transformed trend angl, compute the values afos 20 andsin 26 for each
vector. The sums are thén= 8.25738 and.S = 3.29817.

4. From Eq. 7.29 we then have components of the resultant VB¢tb26515,0.81756). Then
from Egs. 7.30, 7.31R = 0.86 which also indicates a fairly strong concentration.

5. With Eq. 7.32 we haved = 72.03113° or § = 36°, and this is the mean orientation of the
axes.

N 1 234

Figure 7.13: Circular distributions of axes: (a) plot; (b) conversion to vectors.

The size of the samples in this illustrative problem is small; even a single additional point might
be expected to change the mean direction, possibly significantly. In practice, more measurements
are needed for greater confidence.

If the analysis of problems such as these is to be extended to other statistical attributes and
tests we need to take into account the entire population from which the sample was taken and in
particular on the way the data points representing this population are distributed on the circle. The
circular normal or von Mises distributiohis the most useful way of treating points which tend
to cluster symmetrically about a single point. With this, a number of useful properties of such
unimodal distributions can be found, but these matters would take us well beyond the level of this
book. Cheeney (1983, p. 98-106) gives an easily followed discussion.

5This distribution is named for its formulator, the Austrian mathematician Richard von Mises [1883-1953],
younger brother of the respected economist Ludwig von Mises.



18 CHAPTER 7. VECTORS

7.5 SPHERICAL DISTRIBUTIONS

The extension to three dimensions is straight forward. Both Cheeney (1983, p. 107f) and Middleton
(2000, p. 167-180) give good introductions and the books by Mardia (1972), Watson (1983),
Fisher, et al. (1987) and Mardia & Jupp (2000) contain advanced treatments.

Three-dimensional orientation data are represented by points on a unit sphere. As in the two-
dimensional case, such a collection of points can display uniform, unimodal, bimodal and girdle
patterns (Mardia, 1972, p. 222; Mardia & Jupp, 2000, p. 161). We return to some related matters
in Chapter 18.

As in the two-dimensional case, we treat a simple but important problem involving the distri-
bution of points in a single cluster to illustrate the basic approach. If the cluster is approximately
equidimensional it is said to benimodaland the mean direction is given by thesultant vector
R of the IV unit vectors. Its components are

N N N
Ry=> li, R,=> my R.=)> m, (7.33)
=1 =1 =1

where the(l;, m;,n;),i = 1,2..., N are the direction cosines of the individual vectors. The
resultant lengthor magnitude of this vector is

R = w/R§+R§+R§, (7.34)
and its direction cosines are

I=R,/R, m=R,/R, n=R./R. (7.35)

R is also a measure of the concentration of the points about the mean. It will be nearly as large
as N if the points are tightly clustered and will be smaller if they are dispersed. If data sets with
different numbers of measurements are to be comparedngan resultant lengti® is a more
useful measure. This is defined as

R=R/N, where0 < R< Nand0 < R< 1. (7.36)

Problem

e From 10 measured poles of bedding, determine the mean attitude (Table 7.4).

Method

1. Convert the plungg and trend of each pole to direction cosinés m, n) and calculate the
totals. From Eq. 7.33 we then have vedR(—6.38809, —3.67384, 6.24920),

2. From Eq. 7.34R = 9.66216 and from Egs. 7.35 the direction cosinesbhre then
[=—-0.66115, m = —0.38023, 7 = 0.64677.
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P t l; m; n;
32 206 —0.76222 —0.37176 0.52992
30 220 —0.66341 —0.55667 0.50000
46 204 —0.63460 —0.28254 0.71934
40 198 —0.72855 —0.23672 0.64279
20 200 —0.88302 —0.32139 0.34202
32 188 —0.83979 —0.11803 0.52992
54 192 —0.57494 —0.12221 0.80902
56 228 —0.37417 —0.41556 0.82904
36 236 —0.45240 —0.67071 0.58779

10 44 218 —0.56685 —0.44287 0.69466
Sums —6.38809 —3.67384 6.24920

O O~NOOOUTPE WN P

Table 7.3: Calculation of the mean of three-dimensional vectors.

3. The attitude of the meanB(40/210) (shown as a open diamond in Fig. 7.14).

4. With R = 9.7 andR = 0.97 the points are tightly clustered about the mean, as can be seen.

Figure 7.14: Unimodal distribution of poles and its mean.

As in the previous example problem of a circular distribution, in practice a larger number of
measurements will increase confidence.

It should also be noted that the mean direction of any collection of points on the sphere may be
calculated with this method, but in many situations this direction will have little or no geometrical
meaning. For example, if the data are approximately uniformly distributed on the sphere, the mean
vector may have almost any orientation.

If the analysis of this problem is to be extended to other statistical attributes, such as confidence
limits, we need to take into account the entire population from which the sample was taken and
in particular on the way the data points representing this population are distributed on the sphere.
Because poles of bedding can be considered to be true vectorsphbkeacal normalor Fisher
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distribution’ is the most useful way of treating points which tend to cluster symmetrically about a
single point. With this, a number of useful properties of such unimodal distributions can be found,
but to pursue these matters would take us well beyond the level of this book. Cheeney (1983,
p. 112) and Middleton (2000, p. 167—180) give easily followed discussions.

7.6 ROTATIONS

The rotations performed graphically on the stereonet can also be accomplished analytically. To do
this we need expressions which relate the initial veetor, y, z) and final vecton’(z2’, v/, 2’) in
terms of an axis and angle of rotation.

Just as rotations on the stereonet may be performed simply and easily about horizontal and
vertical axes, so too is it easy to describe rotations about the three axes of our coordinate system.
With these descriptions we may then develop procedures for the more general cases.

Before starting we need a sign convention for the sense of a rotation about an axis and we use
theright-hand rule— when the thumb of the right hand points in the positive direction of an axis,
the fingers indicate the sense of a positive rotation.

Expressions for the rotation of a position veat@bout thet+x axis are obtained from a view of
the verticalyz plane looking north, that is, in the direction ¢fz (Fig. 7.15a). Rotating about this
axis, thexr component remains unchanged, thatris= x, but they andz components do change.
In this plane, the orientation af is given by the anglé measured from+y and the orientation
of r’ is given by the anglé + w, also measured from-y. Note that the length of the vector is
unchanged by rotation, that is= r'. Then

cosf =y/r and cos(0 +w,)=1y'/r,
sinf =z/r and sin(0+w,) =2"/r.

Substituting these into the identities for the cosine and sine of the sum of two angles
cos(f +w) = cosfcosw —sinfsinw and sin(f + w) = sinf cosw + cosfsinw  (7.37)
and multiplying through by yields expressions fay andz’. These, plus the equality= 2/, are

=,
/ .
Yy = ycosw, — zsinwg,

/ .
Z = Yslnw, + Z COSWy.

With these equations we may obtain the components of the rotated vector from initial components
x,y, z andw, by simple substitution. We may also represent the rotation represented by these three

"This distribution is named for its originator, the celebrated English statistician Ronald A. Fisher [1890-1962]. He
published the description of this distribution in response to the needs of paleomagnetic studies which were then in
their infancy, and it has been used extensively for this purpose ever since (see Fisher, 1953).

8Smith (1994) describes an interesting way of using the sphere as a tool to teach some additional and important
statistical concepts to geology students.
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equations with the matrix equation

x 1 0 0 T
y| =10 cosw, —sinw,| |y (7.38)
Z 0 sinw, COSwW; z

where the vectors(zx,y, z) andr’(z2/, ¢/, 2’) are represented by column matrices and the rotation

by the3 x 3 square matrix. An important advantage of this type representation is that we can now
think of the square matrix as a vector processor which changes one vector into another, and this
focuses our attention on the entities rather than on their components. Such representations and their
manipulation by matrix algebra have compelling advantages for many closely related problems in
structural geology. The book by Ferguson (1994) gives a good introductory treatment for geology
students. We illustrate a few simple applications here and in several later chapters.

The three algebraic equations can be obtained directly from the matrix equation of Eq. 7.38. To
do this, we think of each row of the square matrix as a vector. Té@rimes column multiplication
corresponds to finding the dot product of each row and the column vector (see Eq. 7.15). The basic
method follows an easily remembered pattern. Consider the first row of the square matrix and
ignore the other two. We then have

a b c| |u au + bv + cw
.. vl = . ) (7.39a)
w .

The second element of the resulting column vector is obtained in the same way by forming the dot
product using the second row of the square matrix

. . . u .
d e f|l|v]=|du+ev+ fw]|, (7.39b)
. . . w .

and finally, the third element of the resulting column vector is the dot product using the third row

u
v =

. (7.39¢c)
g h | |w gu + hv + iw

With a little practice the pattern of making each of these combinations becomes automatic. In
forming the three dot products it helps to keep track of the each product by stepping along each of
the rows with the left index finger while stepping down the column with the right index finger.

For a rotation about thg axis we obtain expressions for the changes initaed> components
on the verticalzz plane looking east, that is, in they direction (Fig. 7.15b). In this plane the
orientation ofr is given by the anglé it makes with thet-z axis and the orientation af by the
anglew, it makes withr. Then

cosf =z/r and cos(d —w,) =1a'/r,
sinf =z/r and sin(f —w,)=2"/r.
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(a) (b) (c)

Figure 7.15: Positive rotations: (a) about; (b) about+y; (c) about+z.

Using these expressions in the identities for the cosine and sine of the difference of two angles
cos(f —w) = cosfcosw + sinfcosw and sin(f —w) = sinf cosw — cos @ cosw, (7.40)
yields the three equations

z' = xcoswy + zsinwy,
/

y =Y,
2 = —xsinw, + 2 cosw,.

In matrix form this rotation is given by

' cosw, 0 sinw,| [z
Jl=1 o 1 o |ly]. (7.41)
4 —sinw, 0 coswy| |2

Finally, the rotation about the axis is described on the horizontal plane looking down
(Fig. 7.15c). In this plane the orientationofs given by the anglé it makes with thet+x axis and
the orientation ot’ by the anglev, it makes withr. Then

cos =z/r and cos(f+w,) =2'/r,
sinf =y/r and sin(0 +w,)=1y'/r.

From the identities of Eqgs. 7.37 we have the three equations

/ .
¥ =z cosw, — ysinw,,
Yy = xsinw, + y cosw;,

/
Z =z,
or the single matrix equation

x cosw, —sinw, 0| [z
y'| = |sinw, cosw, O] |y]. (7.42)
2z 0 0 1] |z
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These results are fully general in the sense that they apply to the rotation of vectors of any
magnitude. In all our examples, however, we treat only unit vectors as represented by direction
cosines.

We represent each of the three square rotational matrices of Eqs. 7.38, 7.41 and 7.42 by the
symbolsR, (v, ), R, (w,) andR.(w.).® Each of these rotations represents a corresponding graph-
ical procedure used to rotate about vertical and horizontal axes on the stereonet. As we have
indicated, each of these may be treated either as a set of three equations which can be manipulated
by simple substitution or as a matrix multiplication.

We may also combine several separate rotation matrices into a single rotation Ratar
example, the sequence of rotations, first abeutand then about-z, may be written in this
notation as

R = Rm(wm)Rz(wz)a

whereR, is applied first and theR,, that is, the order is taken fronght to left Adhering to this
order is important because finite rotations are not commutative.

The product matrixR represents the single equivalent rotation. With the square matrices of
Egs. 7.38 and 7.42, representing rotations about thied > axes, we then have

1 0 0 cosw, —sinw, 0 COS W, —sinw, 0
0 cosw, —sinw, sinw, cosw, 0] = |cosw,sSinw, cosw,CcoSw, — Sinw,
0 sinw, coSwy 0 0 1 sinw, Sinw, SlNw;COSW,  COS W,

(7.43)
The elements of this resulting) x 3 product matrix are obtained by an extension of the pattern
of Egs. 7.39 again usingw times column multiplicationTo see this more clearly focus on the
first row of the left-hand matrix and the first column of the right-hand matrix, disregarding all the
others. We then see only

a b c|l|p - - ap + bq + cr
. . q . . — .

/r’ . .
The resulting element in the product matrix is #het productof this row and this column. Note

that this element is located in the position common to the row and column, that is, in the first row
and first column.

All the elements of the product matrix are obtained in this same way: put your left index finger
against any row of the square matrix on the left and your right index finger against any column of
the square matrix on the right; the three pairs of elements so identified appear in a single element
of the product matrix as the sum of the products of corresponding elements. The position of each
product element is the one common to the selected row and column.

Problem

e Rotate lineL(00/320), first with R, (—60°) then withR,,(—40°) (see Fig. 6.5b).

9The symbolR. here should not be confused with the resultant vector of the previous sections.
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Solution

1. First, convert the plunge and trendlofnto direction cosines expressed as a column matrix.
2. Then substitute the rotational angles into the single product matrix of Eq. 7.43.

3. The full equation is then

x 0.76604  0.64279  0.00000 0.76604 —0.17365
y'| = |—0.32139 0.38302 0.86603 | |—0.64279| = | —0.49240
2z’ 0.55667  —0.66341 0.50000 0.00000 0.85287

Answer

e After the combined rotations, the attitudeli§59/289) and this is the same result obtained
graphically.

This same procedure can be extended to any number of rotations. By hand such multiple
rotations require a tedious series of computations but the sequence can be easily programmed.

/7.7 REFLECTION

As we have seen, there are two different sets of Cartesian coordinate axes in use: one for orientation
data on the stereonet(Fig. 7.1pand the other for geographical data (Fig. 7 )6 is sometimes
necessary to convert from one of these to the other. Comparing unit vectors in each of the positive
directions we can write down these changes as

1 0 0 1 0 0
0 — |1}, 1{ — 0], 0] — {0
0 0 0 0 1 —1

With these three resulting columns we can write down the transformation of =) to (z/, v/, 2/),
where they appear in order as the three columns ir3the3 matrix

' 01 O T
Yy =110 0 Y
Z 00 —1| |z

In a closely related transformation, it is sometimes necessary to convert data plotted on the
xy plane of the right-handed set of axes (Fig. 7.06b thex'y’ plane of the left-handed axes set
(Fig. 7.16B). For example, if data plotted on the stereonet or related projections, we may wish
to convert it to second set of axes to take advantage of the standard plotting routines available in
graphic programs. As before, we write down the conversion of the unit vectors in the first set to
the same vectors in the second set. We write these as

ol =B} e - L)
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=1l B)

This special transformation doast describe a rotation, butraflection Such transformations,
while not applicable to the rotation of physical entities, it does have a role in a number of other
applications, including the description of the symmetry properties of crystals. Its special property
is that it describes a refection about the sloping lines y andz’ = ¢/'.

There is a simple calculation which can be used to distinguish between matrices that describe
rotations and reflections: it is tlteeterminan{see Figs. 7.7.8b and 7.21). For an orthogonal matrix
describing a rotatiodet = +1 and for a reflectionlet = —1.

The full transformation is then

+Z +X +y %
v

2 ;
I V. VS Vi
+y +X +y +X
l (a1) ‘ (a2) ‘ (ba) 4 (b2)
+z

Figure 7.16: Coordinate axes: (a) set of three-dimensional axes; (b) set of two-dimensional axes .

7.8 ROTATIONAL PROBLEMS
N
R R
[\ \
L

@) (b)

Figure 7.17: Conventional tilt correction: (a) upright; (b) overturned.

With these matrix representations of rotations about the coordinate axes we can solve all the
rotational problems of the previous chapter. As we have just seen any sequence of rotations can
be combined by matrix multiplication into an equivalent single rotation matrix that produces the
same result.
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A simple but important geologic problem is the restoration of the pre-tilt orientation of a line in
an inclined plane by the conventional tilt correction. Following the procedure used in Fig. 6.8, we
specify the attitude of the plane by the plunge and trend of the dip véxtdio form the rotation
matrix which restores the plane to horizontality by rotation about the strike direction then requires
three steps.

Steps
1. Rotate vectoD about+z into the verticalez plane byR.,(—t).
2. RotateD about+y to horizontal byR,(6).

3. ReturnD its original trend byR . (+t).

This sequence can be represented by the equation
R(w) =R.(+t) R, (§) R.(—1), (7.44)
where again the order is taken from right to left. If the bed is overturned then the rotation;about

is given byR,, (6 — 180°).

Problem

e A plane whose attitude is given By(60,/230) contains linel. with ¢ = 297°. What was the
pre-tilt trend of the line? (Fig. 7.17a; see also Fig. 6.8a).

Solution
1. The single equivalent rotation is found from the sequence of rotations

R = R.(—230°) R, (+60°) R.(+230°).

2. Using Eq. 1.8, the angle the trendlomakes with the dip direction is = 297 — 230 = 67°.
Then the plunge of this line is = 34.08881°.

3. Its plunge and trend givi(0.37598, —0.73790, 0.56048).
4. The full rotation matrix equation is then

x’ 0.79341 —0.24620 —0.55667 0.37598 0.51593
y'| = |—0.24620 0.70659 —0.66341| |—0.73790| = | —0.85663
Z' 0.55667  0.66341  0.50000 0.56048 0.00000
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Answer

e The estimated pre-tilt attitude of the lineLis(00/280).

Problem
e If the beds in the previous problem are overturned what was the pre-tilt trend of the line?
(Fig. 7.17Db; see also Fig. 6.8b).

Solution

1. The single equivalent rotation is found from the sequence

R = R.(—230°) R, (—120°) R.(+230°).

2. As before, using the given trend and Eq. 1.8, determine the plunge of the line in the plane
and then its direction cosines.

3. In matrix form the set of equations representing the single rotation is then

x 0.38024 —0.73861 0.55667 0.37598 0.99998
y'| = |—0.73861 0.11976  0.66341 —0.73790 | = 0.00575
2z’ —0.55667 —0.66341 —0.50000 0.56048 0.00000

Answer

e The estimated pre-tilt attitude w&g(00,/000), that is, horizontal and trending due north.

In both these solutions the plunge of the line in the inclined plane was calculated from its trend
using the apparent dip formula. If a measured plunge angle is used or its value is read from a plot
it may not lie exactly in the plane and this may result in the corrected attitude departing slightly
from horizontal. Even if the plunge is accurately calculated, a tiny round-off error may produce
the same result. If, because of these errors, the restored line ends up in the upper hemisphere and
it is reversed into the lower hemisphere the trend willlB&° in error. In such cases, some care is
required when interpreting the results.

The case of a rotation about an inclined axis requires a sequence of five coordinate rotations.
There are several equivalent ways of ordering these and the one we choose is closely related to the
procedure used graphically in the previous chapter.
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Steps
1. Rotate axisk® about thet+z axis by angle-t to bring it into the verticak z plane.

2. Rotate thisR about thety axis by anglgp — 90°) to bring it into coincidence with the-z
axis.

3. Rotate about the 2z axis by the specified angleto perform the required rotation.

4. RotateR about the+y axis by anglg90° — p) as the first step in returning it to its original
orientation.

5. Finally, rotateR about thetz axis by angle+t to return it to its initial orientation.

We may also express this sequence of five rotations in short-hand as

R(w) = R.(+1) Ry (90° — p) R, (w) Ry (p — 90°) R (—1). (7.45)

Figure 7.18: Single rotation equivalent to a sequence of rotations.

Problem

e Rotate lineL(00/020) about the inclined axi$(25/330) by w = +40° (Fig. 7.18; see also
Fig. 6.8).
Solution

1. The complete sequence of rotations is given by

R(w) = R.(330°) R, (65°) R.(40°) R, (—65°) R.(—330°). (7.46)
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2. Performing the multiplication of the five matrices, together with the direction cosines of the

line, yields
x! 0.91017 —0.35487 —0.21368| |0.93969 0.73391
y'| = [0.18844 0.81409 —0.54932| [0.34202| = |0.45551
2 0.36889  0.45971 0.80783 0.00000 0.50387
Answer

e From these direction cosines, the plunge and trend of the line after rotafid(Bis/032).

7.9 TRANSFORMATION OF AXES

As we have seen in these examples, any sequence of rotations can always be written as a single
matrix representing a single rotation which produces the same final result. This again illustrates
Euler’'s theorem. As a consequence, it is not possible to recover the separate rotational steps from
angular measurements of the final state alone. The best that we can hope for is the single matrix
representing the total rotation.

Until now we have concentrated on the rotation of various physical lines and planes of geologic
interest within a body of rock. Because it illuminates an important property of the rotation matrix,
we now consider a set of unit base vectors which we take as embedded in a rigid body and which
rotates with it.

In order to see the geometrical meaning of the rotation matrix more clearly it is advantageous to
relabel the three coordinate axes= z, vo = y andzs = z. Similarly, we introduce a notational
scheme for identifying the components of the rotation matrix using numerical subs€riftse
rotation matrix is now written as

Rll R12 R13
R= [Ra Ry R (7.47)
R31 Rz Rs3

where the first subscript identifies the row number and the second identifies the column number.
Now the matrix equation describing the general rotation of a vector has the form

7 Ry Rip Ruz| |1
{L'/2 = R21 R22 Rgg ol . (748)
xh R31 Rza Rss3| |3

Each element of the rotation matrix has a geometric meaning. To show this, we choose to rotate
the unit vector initially in ther; direction, which we write as

Ry Rz Rz |1 Ry
Ro1 Ry Roz| |0 = [Ra
R31 R3s Rsz| [0 Rs;

1°The introduction of these subscripts was essential in the development of matrix algebra (Lanczos, 1954, p. 54).
It made clear that the matrix elements were really components of single entities. It also brought out patterns which
might be overlooked and made programming the equations easier.
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Thus the elements in the first columnRfrepresent the three components of the unit base vector
i initially in the z; direction, that is, they are itdirection cosinesin the same way

0 R12 0 R13
1| — R22 and 0| — R23
0 R32 1 R33

and similarly, the second and third columns contain the components of the unit vietotk

initially in the 25 andx; directions. From these three results it can be seen that all the elements of
R are actually direction cosines relating one set of coordinate axes to the other. For this reason the
rotation matrix is sometimes written as

a1z a2 ais
A= |an axn 23| ,

a31 asz2 33

where the elements;; are now explicitly direction cosines. For example, the direction cosines
of | with respect tary, x5 andx; are(aq1, a1, as;) and the corresponding direction angles are
(ry1 = arccosaii, gy = arccos as; andasz; = arccosasp. In this scheme, the second subscript
refers to theold axes and the first to theewaxes!?

At most only three angles;, ws, w3 are required to specify a fully general rotation, so the
elements ofA cannot all be independent. Because they are the components of a unit vector, the
direction cosines in the first column obey the identity of Eq. 7.5, that is,

2 2 2 _
ayy +ay +az =1,

and similar equations also hold for the elements of the other two columns. Also, because they are
perpendicular, the dot product of the elements of any two columns equals zero (Eq. 7.17). For
example, from the first and second columns

a11012 + G21022 + az1asz = 0,

and there are similar equations for the other two pairs of columns. In all there are six of these
equations. These are tlethogonality relationsand matrices for which these hold are termed
orthogonal

Problem

e Plot the three transformed axe$, ), =, from the orthogonal matrix (see Eq. 7.44)

0.91017 —0.35487 —0.21368
A = 10.18844 0.81409 —0.54932
0.36889  0.45971  0.80783

11Be careful. Some writers reverse the meaning of the subscripts.
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Figure 7.19: Transformation of coordinate axes in three dimensions.

Result

e With Egs. 7.8 each column gives in turf(22/012), x4, (27/114) andx%(54/249) (Fig. 7.19).

This result again illustrates the important fact that, though it may be generated by a sequence of
rotations, a single orthogonal matrix describes nothing more than the angular relationship between
two sets of coordinate axes. For this reason, it is said to desctiaasiormation of axes

In several important applications we will have to deal with how vectors and related entities
behave under a transformation of axes. By a transformation of axes is meant a change from ones
set of orthogonal axes to another with the same origin. In two dimensions the matrix representing
such a transformation is

A= {“” “12] . (7.49)

Q21 A22

First, we show the application of the transformation of the components of a vector. Such
transformations are presented in most introductory books on analytic geometry and calculus (e.g.,
Thomas & Finney, 1993, p. 641; also Eisenhart, 1966, p. 149, 208).

Starting with a vectoV referred to a particular set of axes (Fig. 7.20a), there are two different
but related approaches to the transformation of these components.

1. Afixed vector relative to rotated axes is calledadias because it is the same vector but with
a different name (Fig. 7.20Db). In this example, the sense of natation is positive.

2. The rotation of a vector relative to fixed axes is callecahiipi because the vector is now in
a different place (Fig. 7.20c). Here the rotation is negative, that is, the opposite sense.

As we will see, both formulations give the same result but because it is the standard approach we
choose the first.
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y y y y
V(x,y) V(X,y) V(x,y)
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Figure 7.20: Transformation of a vectors: (a) original axes; (b) rotated axes; (c) rotated vector.

Problem

e \ectorV has its components referredtg axes. What will its components be when referred
to transformed axes'y’?

Derivation

1. If V makes anglé with the x axis (Fig. 7.20a) then its components are

x =V cosd, (7.50a)
y = Vsind. (7.50b)

2. Similarly,V makes anglé’ with the transformed axis’ (Fig. 7.20b) and its components are

2 =V cost, (7.51a)
y = Vsinf'. (7.51b)

3. The angle# andd’ are related by
=0 +uw, (7.52)

wherew is the angle between theandz’ axes measured from

4. With Eq. 7.50 we then have

x =V cos(d +w),
y = Vsin(0 +w).

5. Substituting the identifies for the sine and cosine of the difference of two angles

sin(0' + w) =sin cosw + cos @' sinw  and  cos(§ +w) = cos’ cosw — sin @ sinw
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yields

x=Vcos(# +w)=Vcost cosw— Vsin# sinw,
y=Vsin(d +w)=Vcost cosw+ Vsiné cosw.

6. Then substituting Egs. 7.51 these simplify to

x =12 cosw — 1 sinw, (7.53a)

y=12'sinw + 1y cosw. (7.53b)

7. Itis useful to write this pair as the matrix equation
p— 1 /
{[L} _ {Cf)SU) S1n w] {[L’/] ‘ (754)
Y SlInw  COoSw Y
This expresses ther, y) components in terms of the transformed componénts,’) and
the rotation.
8. For our immediate purposes we need to recast Eq. 7.54. We do this with the matrix with the

opposite sense of rotation. The simplest way is to formtthesposby interchanging the
rows and columns. Doing this Eq. 7.49 becomes

AT = {““ “21] . (7.55)

a1z Aa22

By pre-multiplying (that is from the left) both sides of Eq. 7.54 by the transpose matrix gives
cosw sinw| || | cosw sinw| [cosw —sinw]| |2’
—sinw cosw| |y| |—sinw cosw| |sinw cosw | |¥'|’
the two rotations on the right-hand side cancel leaving
, :
{[L’/} _ { CO'SUJ SIHUJ} {[L’] ‘ (756)
Y —slnw cosw| |y
subsection*Calculation

1. From Fig. 7.20bf = 60° andw = 20°. Using these values and takifg= 1 Eq. 7.54
becomes

m {0.9397 0.3420} [0.5000]
vl

B 0.7660
—0.3420 0.9397| |0.8660 '

0.6420

2. As acheclW = y'/2’ = 40°. which is the same value as required by Eq. 7.52.



34 CHAPTER 7. VECTORS

A second important application is to express the equation of an ellipse in transformed axes
(Fig. 7.21a). The general equation of an ellipse centered at the origin is

Az? +2Bxy + Cy? = 1. (7.57)

Some authors write this equation usiBgy (e.g., Thomas & Finney, 1993, p. 640) while others
use2Bzy (e.g., Boas, 1983, p. 420). We prefer this second form because we can represent the
coefficients of the ellipse as a square matrix in a simple ¥ayith this matrix the equation of the

ellipse is then
[a: y} {g g} B] =1. (7.58)

.

Figure 7.21: Transformation of an ellipse: (a) in original axes; (b) general transformation; (c)
special transformation.

(@) (b) ()

To transform this matrix equation of the ellipse requires several steps.

1. First, substitute the expression for the; components from Eq. 7.54 for the column matrix
giving

A Bl |cosw —sinw| |2
[x y] {B C] {sinw Cosw] L/} =1 (7.59)

2. Next, we need to make a similar substitution for the row matrix. We do this by forming the
transpose of both sides of Eq. 7.54. On the left-hand side the column matrix become a row
matrix. On the right-hand side, the product of the square and column matrix employs the
reversal rulewhereby the transpose of a product is equal to the product of the transposes in
reverse order. The results is

@yl = [ ] { COS W sinw} ‘ (7.60)

—sinw cosw

2We will see in Chapter 12 that this square matrix of coefficients has important applications in strain analysis.
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3. Substituting this in Eq. 7.58, the full result is

;| cosw sinw| A B| |cosw —sinw| [2'|
[x y} {—sinw COSU)] {B C] {sinw Cosw] {y’} =1 (7.61)

Expanding the three square matrices yields
{A’ B’] B { Acos? + Bsinf cosf + Csin® (C — A)sinf cosf + B(cos? § — sin® )
|

B ' C — A)sinfcos + B(cos? § — sin® ) Asin?0 — Bcosfsinf + C cos? 0
(7.62)

Of special interest is the case of transforming the coordinate axes to coincide with the principal
axes of the ellipse (Fig. 7.21c). Referred to these dxes 0, and the formula becomes

A2+ C'y? =1, (7.63)
and the lengths of the semi-axes are giveri py' A’ and1//C".

7.10 THREE-POINT PROBLEM

The three-point problem may be solved analytically in several ways. Haneberg (1990) described
a technique involving Lagrangian interpolation and De Paor (1991) used barycentric coordinates.
Here we illustrate two additional vector-related ways.

Coordinate Geometry

The first uses coordinate geometry to determine the components of the vector normal to the plane.
Because elevations on land are almost always positive numbers it is convenient, and universal, to
adopt the right-handed system of geographic coordinate axesiwith- east,+y = north and

+z = up. Note that in contrast to our previous coordinate sygtesitivevertical angles are now
measured upward ambsitivehorizontal angles are measured anticlockwise from

We need the equation of the plane passing through three non-collinear pbints v, z1),
Py(z9, 42, 22) andPs(x3, ys, 23), and this requires the solution of the system of homogeneous equa-
tions (see Vacher, 2000e)

Ar+ By+ Cz+ D =0,
Arxi+ By +Cz1+ D =0,
Axo+ Bys + Cz+ D =0,
Axs+ Bys +Cz3+ D = 0.

The first of these is the general form of the equation of the plane. The other three express the
conditions that the three points lie on this plane. We may also write these in the form of a matrix
equation
r Yy =z
1 Y1 2
T2 Y2 %2
T3 Y3 %3

|
cooo

QT =
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This equation always has the trivial solutioh= B = C = D = 0, but this has no physical
meaning. A non-trivial solution exists if and only if the determinant of #he 4 matrix is equal to
zero
X Yy z
1 Y1
T2 Y2 Z2
T3 Y3 =3

— = =
Il
(@)

Expanding by the method of cofactors gives the required equation of the plane

o2 1 1 oz 1 1 oy 1 1 Y1 21
Yo 2o llx—|z2 29 lly+|z2 Y2 1z — |22 Y2 22| =0.
ys 23 1 r3 23 1 r3 Y3 1 T3 Y3 23

There are two ways of expanding these 3 determinants.

1. If there are all 1s in any column, as in the first three terms, the method of cofactors is
particularly easy to apply.

2. In the more general case a simple extension of the method used2fer 2 determinant
is perhaps the easiest approach. Copy the first two columns to the right. Then the three
triple products from the upper left to lower right are positive (Fig. 7.22a) and the three triple
products from upper right to lower left are negative (Fig. 7.22b).

Applying these yields

AR
A=+ Yo 29
Ys %3
Ty z1
B=— To 22
T3 Zz3

= +[(y223 — 22y3) — (Y123 — 21y3) + (Y122 — 2192)], (7.64a)

= —[(1'223 — 221'3) — (1'123 — 211'3) + (1'122 — le'g)], (764b)

1 %
C=+4|12 ¥
T3 Ys
1 Y1 z1
D= —l|z2 yo 2| =—[(T1Y223 + y12203 + 2122Y3) — (21Y223 + T122y3 + Y1x223)]. (7.64d)
T3 Ys Zz3

= +[(z2y3 — y2w3) — (T1y3 — Y123) + (212 — Y172)], (7.64c)

O S T

Geometrically, the coefficientd, B andC' are the components of a vectdr normal to the
plane. The constar? is related to the distance from the origin to the plane in this direction (which
we don’t need in this application). WitH, B andC' evaluated, the equation of the normal vector
is then

N=Ai+Bj+Ck. (7.65)
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Do B o ow xoov (&l (ul (v

X (Y2 (z) (%) Y X (v () (6] ¥

A AR
+ S+ 4+ £ L

+ X1Y2Z3 + Y122oX3 + Z1X5Y3 — 4YoX3 — X1ZpY3 ~ Y1XoZ3
@ (b)

Figure 7.22: Evaluating & x 3 determinant.

x Y Z
P 100m 60m 535m
P 1350m 16m 415m
Py 156m 214m 440 m

Table 7.4: Dip and strike from coordinate geometry.

Problem

e From pointsP;, P, and P; on a plane, determine its attitude (see Fig. 7.23 and Table 7.4).

Solution

1. From Eqgs. 7.59 the values of the coefficients.dre: 22660, B = 17030 andC' = 40964.
These are direction numbers of the vedddnormal to the plane.

2. Normalizing these numbers, the direction cosinesNf@ 45488, 0.34186, 0.82232). Note
that because the direction of: is takenupward these represents apwardpointing vector
which is plotted in the upper hemisphere in Fig. 7.24a.

3. The opposite oN is the downward pointing pole vectdt, that is,P = —IN. This vector is
plotted in the lower hemisphere in Fig. 7.24b.

4. The trend of the dip vectdd and the trend oN are the same.
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100 m

0O > X

Figure 7.23: Three-point problem by coordinate geometry.

Answer

e Using EQgs. 7.8 gives the correct plunge of the dip vector but its trend is measured from
+z = east. We need its complement and we thus fa{&5/053).

(©)

Figure 7.24: Three-point problem: (&) andD in the upper hemisphere; () andD in the lower
hemisphere; (c) true dip from apparent dips\, andA,,.

Vector Analysis

The second method uses elementary vector analysis. Not only does this provide a simple solution
but the basic approach is directly applicable to a wide variety of other physical problems. The
treatment closely follows Vacher (1989).

Associated with every point on a map depicting the inclined plane is a number representing its
heighth. The functional relationship between the elevation and these geographic points is written

h(z,y).
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In mathematical term&(z, y) is atwo-dimensional scalar fieldAt every point in this field the
rate of change ok with distances depends on direction. This is tdé@ectional derivativeand it is
denotedih/ds. The differenceAr in the heights between any two points on the inclined plane is
found from the slope and map distance between the points, that is,

Ah = (dh/ds)s.

There is a direction in whicldh/ds has a maximum value, and this direction of maximum
slope is represented by a vector called gnadientof », written gradh or VA.X3 In component
form this gradient vector is given by the sum of the vector components in each of the coordinate

directions.
Oh. Oh

= —1 —I— —.’
ox 8y‘]
wherei andj are the unit base vectors in ther and +y directions and the partial derivatives

0h/0x andOh /0y are the slopes of the plane in each of these directions. We can now express the
directional derivativan any direction as the dot product

Vh

dh
Vh-t=—,
ds
wherei is the unit vector in the required direction.

This gradient vector exist at every point in the field, expresseW aér, y), and this is the
description of avector field*

y y y
Ps Ps(h
n Ya 3(hs)
Ax
5 \\ Po| Ys Py(hy)
A 30
y
Py SERCYS
X

X o X X3 X5 X

@) (b) (©

Figure 7.25: Structure contours and the gradient ve¥tar

Because vectoWV 1 is the steepest direction its magnitude is also the slope of the line of true
dip. The dip direction is given by-Vh, that is, opposite the direction & h. The reason for the

13The vector operator symb& was introduced by the Irish mathematician and physicist William Rowen Hamilton
[1805-1865], and calledabla after a Hebrew harp of similar shape. It is now commonly terrdefi but do not
confuse the name or symbol with the Gred){ta.

n this application the scalar fieltl(z, y) describes an inclined plane and therefore the ve¥tarhas constant
magnitude and direction everywhere in the field. But the analysis also applies to more general situatiohgwhere
describes an curviplanar surfadéh still exists at every point, but both its magnitude and direction will vary.
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change of sign is tha¥ i refers to the maximunncreasewhile the dip refers to the maximum
decreasef h. We can avoid this minus sign by defining the dip vector as

D=_Vh. (7.66)

The components of this vector in each of the coordinate directions give the magnitudes of the
apparent dip vectord , and A, (Fig. 7.245). Thus

A, = —0h/dz and A, = —0h/dy. (7.67)

The magnitude of the dip vector is then

D= /A2 4 A2, (7.68)

and the angle of true dip is

0 = arctan D. (7.69)
The angle vectoD makes with4-z is given by
6, = arctan(A,/A,). (7.70)

In order to find the gradient vectd¥ h we need to express its components in terms of the
coordinates of the three known poin®s(x1, y1, h1), Pa(x2, y2, he) @andPs(z3, ys, hs) on the plane.
We may relate these components to the horizontal and vertical distances between pairs of these
known points, and we do this for lind3 P, and P, P; (Fig. 7.25b).

1. The vertical distance between poitftsand P, is Ah;s = (he — hy). This is made up of
two parts:Ah, is associated with line parallel to theaxis andA#h, is associated with line
parallel to they axis (Fig. 7.25c). In terms of the coordinates of poiRfsand P, these are

oh oh

Ah, = O (ZEQ — .I'l) and Ahy = a—y(yg — yl)
The totalAh is the sum of these two parts
oh oh
Ah12 = %(lé - 1'1) + a—y(yl — yz) = (hg — hl) (7718)

2. Similarly, the vertical distance between poiftsand P; is Ahy3 = (hs — hy). It too is made
up of two parts and the sum of these parts is

oh oh

5@ — o) + 5 (ys —y1) = (hs = ). (7.71b)

Ahyg =
13 = oy

We now have two equations for the two unknown slofgggoxr andoh/0y. Solving for these
using Cramer’s rul® gives

on _
oy

xr3 — I

9 and

To — X1
(xs - 1'1) (ys - y1)

‘( hi) ( ) (2 —z1) (h2 —xl)
oh  |(ha —h1) (ys—y1) ( ) (hs —hi)

( ) ( ) (w2 — 1) (Y2 — )|
(xs - xl) (ys y1)

5Named after the Swiss mathematician Gabriel Cramer [1704-1752], a contemporary of Leonard Euler.
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x Y h

P 100m 60m 535m
P 1350m 16m 415m
Py 156m 214m 440 m

Table 7.5: Dip vector fronW h.

Expanding these determinants we have

Oh (hy = hi)(ys —y1) = (hs — h1)(y2 — 1)
or  (z2—21)(ys — y1) — (z3 — $1)( ) (7.72a)
Oh _ (hs — hy) (w2 — xl) (hs — ha) (w5 — 1)
By (w2 —21)(ys — 1) — (T3 — o) (Y2 — 1) (7.72b)

Problem

e Solve the same three-point problem using this vector approach (see Fig. 7.25 and Table 7.5).

Solution

1. With coordinatesz, y) and heights:, Eqs. 7.66 yield the downward slopes in each coordi-
nate directiom4,,(0.55317) andA,(0.41573). The corresponding dip angles arg= 28.95°
andoy,, = 22.57°.

2. From Eqgs. 7.67 and 7.68, = 0.69197, hence the dip of the plare= 34.68°.

3. From Eq. 7.69¢, = 36.93° and this is the trend of the direction of true dip measured from
east.

Answer

e The attitude of the dip vector iD(35/053), which is the same as obtained by coordinate
geometry (see Fig. 7.24c).

711 EXERCISES

1. Determine the direction angles &f45/100) graphically on the stereonet. Compute the
corresponding direction cosines and check the accuracy of your measurements with Eq. 7.5.
Also compute the direction cosines from the plunge and trend and compare with your results.
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Using direction angles plot vectdf(—0.43301, —0.25000, 0.86603). Read the plunge and
trend and compare with the results obtained with Eqgs. 7.8.

The poles of two plane aid, (30/050) andP.(40/345). Graphically and analytically de-
termine the dihedral angle between these planes and the attitude of the line of intersection.

Rotate the vector of Question Nowl= 60° about ther axis.

5. Given the two planes N 30 W, 20 E and N 50 E, 30 N determine the attitude of the line of

10.

© 0 N O

intersection, the dihedral angle between the two planes and orientation of the bisector of the
two planes.

MORE
MORE
MORE
MORE
MORE.





